132

APPENDIX C. LABORATORY EXERCISES SOLUTIONS

C.4 Control Systems Solution

C.4.1 In-lab section

1. Thefollowing m-file does the job:

function selection =

sel ect(array)

% SELECT - G ven a cell array, randomy sel ect one

% el enent and return

it.

% CGenerate a random i ndex.
index = floor(1 + rand * length(array));

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to

% check.

if (index == (length(array) + 1)) index = length(array); end

sel ection = array(index);

This can be used as follows:

>> for i=1:10 x(i) =
>> X

select(letters); end

The following m-file does the job:

2. function r = chooserow a)

% COVPCSE - return a

random y chosen row of the

% argunent cell array.

% CGet the size of the argunent.

[n, M = size(a);

% Generate a random i ndex.
index = floor(1 + rand * n);

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to

% check.

C.4. CONTROL SYSTEMS SOLUTION 133

if (index == (n + 1)) index = n; end

r = a(index,:);
Here we apply it several times:

chooserow(t)
ans =
"upper left’ "upper right’
chooserow(t)
ans =
"lower |eft’ "l ower right’
chooserow(t)
ans =

“upper left’ "upper right’

3. Hereisamodified update function that returns a cell array:

% PETUPDATES - A function representing the state update of a vir-

tual pet.
% The first argunent nust be in { absent’, 'pet’, 'feed, 'tine passes’}
% The second argunent nust be in { happy’, 'hungry’, 'dies’}

% The returned value is a two-elenent cell array, where the first
% el ement next state of the pet, and the second el enent
%is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, 'absent’};

switch(state)
case ' happy’
swi tch(in)
case ' pet’
r = {state, 'purrs’};
case ’'feed

134

APPENDIX C. LABORATORY EXERCISES SOLUTIONS

r = {state, "throws up’'}
case 'tine passes
r = { hungry’, ’'rubs’};
end
case ' hungry’
switch(in)
case ’'feed
r = {" happy’, 'purrs’};
case ' pet’
r = {state, 'bites’};
case 'tine passes
r = { dies’, 'dies'};
end
case ’'dies’
r = {state, 'dies’};
end

Here isamodified program to run the pet (without the driver):

% RUNPET - Execute the virtual pet state machine

%initial state.
pet st at e=’ happy’ ;

% | oop forever

while 1
% Get the user input as a string.
str=input ('’ enter one of absent, pet, feed, tinme passes: ',’s’);

% If the user entered quit or exit, then break the | oop.
if strcnp(str,’quit’) break; end
if strcnp(str,’ exit’) break; end

% Updat e t he pet.
r = petUpdates(petstate, str);
petstate = r{1};

% print what the pet does.

disp(r{2})
if strcnp(petstate, 'dies’) break; end
end

Only one line changes.

% PETUPDATES - A function representing the state update of a vir-
tual pet.

C.4. CONTROL SYSTEMS SOLUTION 135
% The first argunent nust be in { absent’, 'pet’, 'feed, 'tine passes’}
% The second argunent rust be in { happy’, 'hungry’, 'dies’}

% The returned value is a two-elenent cell array, where the first

% el ement next state of the pet, and the second el enent
%is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, 'absent’};

switch(state)
case ' happy’
swi tch(in)
case ' pet’
r = {state, 'purrs’};
case 'feed
r = {state, "throws up’}
case 'tine passes
r = { hungry’, 'rubs’};
end
case ' hungry’
swi tch(in)
case 'feed
r = { happy’, 'purrs’; “hungry’, 'rubs’};
case ' pet’
r = {state, 'bites’};
case 'tine passes
r = { dies’, 'dies'};
end
case ’'dies’
r = {state, 'dies’};
end

In the program that runs the cat, again, only one line changes:

% RUNPET - Execute the virtual pet state nachine

%initial state.
pet st at e=’ happy’ ;

% | oop forever
while 1
% Get the user input as a string.
str=input ('’ enter one of absent, pet, feed, tinme passes:

sy

136

APPENDIX C. LABORATORY EXERCISES SOLUTIONS

% I1f the user entered quit or exit, then break the | oop.
if strcnp(str,’ quit’) break; end
if strcnp(str,’exit’) break; end

% Updat e the pet.
r = chooser ow pet Updat es(petstate, str));
petstate = r{1};

% print what the pet does.

di sp(r{2})

if strcnp(petstate, 'dies’) break; end
end

Hereisasample run:

>> runpet

enter one of absent, pet, feed, tine passes: tine passes
rubs

enter one of absent, pet, feed, tine passes: feed

purrs

enter one of absent, pet, feed, tine passes: tine passes
rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

purrs

Hereis amodification of the cascade composition that uses the nondeterminstic cat instead of
the deterministic one:

% DRI VEPET - Execute the virtual pet state machi ne conposed
% in cascade with the driver state nachine.

%initial state.
driverst at e=’ happy’;
pet st at e=’ happy’ ;

% | oop 10 tines, since this is automatically driven.

C.4. CONTROL SYSTEMS SOLUTION

f or

end

i =1:10,

% Update the state of the driver and get its output.

% The input to the driver is always "1'.
[driverstate, petinput] = driver(driverstate, "1');

% update the state of the pet and get its output.
r = chooser ow pet Updat es(petstate, petinput));
petstate = r{1};

% Di spl ay the output of the pet.
disp(r{2})

Hereisatypica run:

>> drivepet

rubs
purr
rubs
purr
rubs
purr
rubs
rubs
di es
di es

S

S

S

Inevitably, we get two 'rubs’ in arow and the cat dies.

137

	Signals
	Defining Signals and Systems -- Solutions
	State Machine Models -- Solutions
	Composing State Machines
	Linear Systems
	Frequency Domain Solutions
	Frequency Response Solutions
	Filtering Solutions
	The Four Fourier Transforms Solutions
	Sampling and Reconstruction Solutions
	Sets and Functions
	Complex Numbers
	Laboratory Exercises Solutions
	Arrays and sound solution
	In-lab section
	Independent section

	Images solution
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control Systems Solution
	In-lab section
	Independent section

	Difference Equations Solutions
	In-lab section
	Independent section

	Differential Equations Solutions
	In-lab section
	Independent section

	Spectrum Solutions
	In-lab section
	Independent section

	Comb Filters Solution
	In-lab section
	Independent section

	Plucked String Instrument Solutions
	In-lab section
	Independent section

	Modulation and Demodulation Solution
	In-lab section
	Independent section

	Sampling and Aliasing Solution
	In-lab section

