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C.4 Control Systems Solution

C.4.1 In-lab section

1. Thefollowing m-file does the job:

function selection =

sel ect(array)

% SELECT - G ven a cell array, randomy sel ect one

% el enent and return

it.

% CGenerate a random i ndex.
index = floor(1 + rand * length(array));

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to

% check.

if (index == (length(array) + 1)) index = length(array); end

sel ection = array(index);

This can be used as follows:

>> for i=1:10 x(i) =
>> X

select(letters); end

The following m-file does the job:

2. function r = chooserow a)

% COVPCSE - return a

random y chosen row of the

% argunent cell array.

% CGet the size of the argunent.

[n, M = size(a);

% Generate a random i ndex.
index = floor(1 + rand * n);

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to

% check.
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if (index == (n + 1)) index = n; end

r = a(index,:);
Here we apply it several times:

chooserow(t)
ans =
"upper left’ "upper right’
chooserow(t)
ans =
"lower |eft’ "l ower right’
chooserow(t)
ans =

“upper left’ "upper right’

3. Hereisamodified update function that returns a cell array:

% PETUPDATES - A function representing the state update of a vir-

tual pet.
% The first argunent nust be in { absent’, 'pet’, 'feed, 'tine passes’}
% The second argunent nust be in {  happy’, 'hungry’, 'dies’}

% The returned value is a two-elenent cell array, where the first
% el ement next state of the pet, and the second el enent
%is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, 'absent’};

switch(state)
case ' happy’
swi tch(in)
case ' pet’
r = {state, 'purrs’};
case ’'feed
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r = {state, "throws up’'}
case 'tine passes
r = { hungry’, ’'rubs’};
end
case ' hungry’
switch(in)
case ’'feed
r = {" happy’, 'purrs’};
case ' pet’
r = {state, 'bites’};
case 'tine passes
r = { dies’, 'dies'};
end
case ’'dies’
r = {state, 'dies’};
end

Here isamodified program to run the pet (without the driver):

% RUNPET - Execute the virtual pet state machine

%initial state.
pet st at e=’ happy’ ;

% | oop forever

while 1
% Get the user input as a string.
str=input ('’ enter one of absent, pet, feed, tinme passes: ',’s’);

% If the user entered quit or exit, then break the | oop.
if strcnp(str,’quit’) break; end
if strcnp(str,’ exit’) break; end

% Updat e t he pet.
r = petUpdates(petstate, str);
petstate = r{1};

% print what the pet does.

disp(r{2})
if strcnp(petstate, 'dies’) break; end
end

Only one line changes.

% PETUPDATES - A function representing the state update of a vir-
tual pet.
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% The first argunent nust be in { absent’, 'pet’, 'feed, 'tine passes’}
% The second argunent rust be in {  happy’, 'hungry’, 'dies’}

% The returned value is a two-elenent cell array, where the first

% el ement next state of the pet, and the second el enent
%is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, 'absent’};

switch(state)
case ' happy’
swi tch(in)
case ' pet’
r = {state, 'purrs’};
case 'feed
r = {state, "throws up’}
case 'tine passes
r = { hungry’, 'rubs’};
end
case ' hungry’
swi tch(in)
case 'feed
r = { happy’, 'purrs’; “hungry’, 'rubs’};
case ' pet’
r = {state, 'bites’};
case 'tine passes
r = { dies’, 'dies'};
end
case ’'dies’
r = {state, 'dies’};
end

In the program that runs the cat, again, only one line changes:

% RUNPET - Execute the virtual pet state nachine

%initial state.
pet st at e=’ happy’ ;

% | oop forever
while 1
% Get the user input as a string.
str=input ('’ enter one of absent, pet, feed, tinme passes:

sy
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% I1f the user entered quit or exit, then break the | oop.
if strcnp(str,’ quit’) break; end
if strcnp(str,’exit’) break; end

% Updat e the pet.
r = chooser ow pet Updat es(petstate, str));
petstate = r{1};

% print what the pet does.

di sp(r{2})

if strcnp(petstate, 'dies’) break; end
end

Hereisasample run:

>> runpet

enter one of absent, pet, feed, tine passes: tine passes
rubs

enter one of absent, pet, feed, tine passes: feed

purrs

enter one of absent, pet, feed, tine passes: tine passes
rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

rubs

enter one of absent, pet, feed, tine passes: feed

purrs

Hereis amodification of the cascade composition that uses the nondeterminstic cat instead of
the deterministic one:

% DRI VEPET - Execute the virtual pet state machi ne conposed
% in cascade with the driver state nachine.

%initial state.
driverst at e=’ happy’;
pet st at e=’ happy’ ;

% | oop 10 tines, since this is automatically driven.
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f or

end

i =1:10,

% Update the state of the driver and get its output.

% The input to the driver is always "1'.
[driverstate, petinput] = driver(driverstate, "1');

% update the state of the pet and get its output.
r = chooser ow pet Updat es(petstate, petinput));
petstate = r{1};

% Di spl ay the output of the pet.
disp(r{2})

Hereisatypica run:

>> drivepet

rubs
purr
rubs
purr
rubs
purr
rubs
rubs
di es
di es

S

S

S

Inevitably, we get two 'rubs’ in arow and the cat dies.
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