
132 APPENDIX C. LABORATORY EXERCISES SOLUTIONS

C.4 Control Systems Solution

C.4.1 In-lab section

1. The following m-file does the job:

function selection = select(array)

% SELECT - Given a cell array, randomly select one
% element and return it.

% Generate a random index.
index = floor(1 + rand * length(array));

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to
% check.
if (index == (length(array) + 1)) index = length(array); end

selection = array(index);

This can be used as follows:

>> for i=1:10 x(i) = select(letters); end
>> x

x =

’a’ ’a’ ’d’ ’c’ ’e’ ’c’ ’c’ ’e’ ’c’ ’b’

The following m-file does the job:

2. function r = chooserow(a)
% COMPOSE - return a randomly chosen row of the
% argument cell array.

% Get the size of the argument.
[n, m] = size(a);

% Generate a random index.
index = floor(1 + rand * n);

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to
% check.



C.4. CONTROL SYSTEMS SOLUTION 133

if (index == (n + 1)) index = n; end

r = a(index,:);

Here we apply it several times:

chooserow(t)

ans =

’upper left’ ’upper right’

chooserow(t)

ans =

’lower left’ ’lower right’

chooserow(t)

ans =

’upper left’ ’upper right’

3. Here is a modified update function that returns a cell array:

% PETUPDATES - A function representing the state update of a vir-
tual pet.
% The first argument must be in {’absent’, ’pet’, ’feed’, ’time passes’}
% The second argument must be in {’happy’, ’hungry’, ’dies’}
% The returned value is a two-element cell array, where the first
% element next state of the pet, and the second element
% is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, ’absent’};

switch(state)
case ’happy’

switch(in)
case ’pet’

r = {state, ’purrs’};
case ’feed’



134 APPENDIX C. LABORATORY EXERCISES SOLUTIONS

r = {state, ’throws up’};
case ’time passes’

r = {’hungry’, ’rubs’};
end

case ’hungry’
switch(in)
case ’feed’

r = {’happy’, ’purrs’};
case ’pet’

r = {state, ’bites’};
case ’time passes’

r = {’dies’, ’dies’};
end

case ’dies’
r = {state, ’dies’};

end

Here is a modified program to run the pet (without the driver):

% RUNPET - Execute the virtual pet state machine

% initial state.
petstate=’happy’;

% loop forever.
while 1

% Get the user input as a string.
str=input(’enter one of absent, pet, feed, time passes: ’,’s’);

% If the user entered quit or exit, then break the loop.
if strcmp(str,’quit’) break; end
if strcmp(str,’exit’) break; end

% Update the pet.
r = petUpdates(petstate, str);
petstate = r{1};

% print what the pet does.
disp(r{2})
if strcmp(petstate, ’dies’) break; end

end

4. Only one line changes:

% PETUPDATES - A function representing the state update of a vir-
tual pet.



C.4. CONTROL SYSTEMS SOLUTION 135

% The first argument must be in {’absent’, ’pet’, ’feed’, ’time passes’}
% The second argument must be in {’happy’, ’hungry’, ’dies’}
% The returned value is a two-element cell array, where the first
% element next state of the pet, and the second element
% is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, ’absent’};

switch(state)
case ’happy’

switch(in)
case ’pet’

r = {state, ’purrs’};
case ’feed’

r = {state, ’throws up’};
case ’time passes’

r = {’hungry’, ’rubs’};
end

case ’hungry’
switch(in)
case ’feed’

r = {’happy’, ’purrs’; ’hungry’, ’rubs’};
case ’pet’

r = {state, ’bites’};
case ’time passes’

r = {’dies’, ’dies’};
end

case ’dies’
r = {state, ’dies’};

end

In the program that runs the cat, again, only one line changes:

% RUNPET - Execute the virtual pet state machine

% initial state.
petstate=’happy’;

% loop forever.
while 1

% Get the user input as a string.
str=input(’enter one of absent, pet, feed, time passes: ’,’s’);



136 APPENDIX C. LABORATORY EXERCISES SOLUTIONS

% If the user entered quit or exit, then break the loop.
if strcmp(str,’quit’) break; end
if strcmp(str,’exit’) break; end

% Update the pet.
r = chooserow(petUpdates(petstate, str));
petstate = r{1};

% print what the pet does.
disp(r{2})
if strcmp(petstate, ’dies’) break; end

end

Here is a sample run:

>> runpet
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: feed
purrs
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
purrs

5. Here is a modification of the cascade composition that uses the nondeterminstic cat instead of
the deterministic one:

% DRIVEPET - Execute the virtual pet state machine composed
% in cascade with the driver state machine.

% initial state.
driverstate=’happy’;
petstate=’happy’;

% loop 10 times, since this is automatically driven.



C.4. CONTROL SYSTEMS SOLUTION 137

for i=1:10,
% Update the state of the driver and get its output.
% The input to the driver is always ’1’.
[driverstate, petinput] = driver(driverstate, ’1’);

% update the state of the pet and get its output.
r = chooserow(petUpdates(petstate, petinput));
petstate = r{1};

% Display the output of the pet.
disp(r{2})

end

Here is a typical run:

>> drivepet
rubs
purrs
rubs
purrs
rubs
purrs
rubs
rubs
dies
dies

Inevitably, we get two ’rubs’ in a row and the cat dies.


	Signals
	Defining Signals and Systems -- Solutions
	State Machine Models -- Solutions
	Composing State Machines
	Linear Systems
	Frequency Domain Solutions
	Frequency Response Solutions
	Filtering Solutions
	The Four Fourier Transforms Solutions
	Sampling and Reconstruction Solutions
	Sets and Functions
	Complex Numbers
	Laboratory Exercises Solutions
	Arrays and sound solution
	In-lab section
	Independent section

	Images solution
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control Systems Solution
	In-lab section
	Independent section

	Difference Equations Solutions
	In-lab section
	Independent section

	Differential Equations Solutions
	In-lab section
	Independent section

	Spectrum Solutions
	In-lab section
	Independent section

	Comb Filters Solution
	In-lab section
	Independent section

	Plucked String Instrument Solutions
	In-lab section
	Independent section

	Modulation and Demodulation Solution
	In-lab section
	Independent section

	Sampling and Aliasing Solution
	In-lab section





