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C.4 Control Systems Solution

C.4.1 In-lab section

1. The following m-file does the job:

function selection = select(array)

% SELECT - Given a cell array, randomly select one
% element and return it.

% Generate a random index.
index = floor(1 + rand * length(array));

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to
% check.
if (index == (length(array) + 1)) index = length(array); end

selection = array(index);

This can be used as follows:

>> for i=1:10 x(i) = select(letters); end
>> x

x =

’a’ ’a’ ’d’ ’c’ ’e’ ’c’ ’c’ ’e’ ’c’ ’b’

The following m-file does the job:

2. function r = chooserow(a)
% COMPOSE - return a randomly chosen row of the
% argument cell array.

% Get the size of the argument.
[n, m] = size(a);

% Generate a random index.
index = floor(1 + rand * n);

% There is a small chance that the index will be too
% large (if rand happens to return 1.0), so we have to
% check.
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if (index == (n + 1)) index = n; end

r = a(index,:);

Here we apply it several times:

chooserow(t)

ans =

’upper left’ ’upper right’

chooserow(t)

ans =

’lower left’ ’lower right’

chooserow(t)

ans =

’upper left’ ’upper right’

3. Here is a modified update function that returns a cell array:

% PETUPDATES - A function representing the state update of a vir-
tual pet.
% The first argument must be in {’absent’, ’pet’, ’feed’, ’time passes’}
% The second argument must be in {’happy’, ’hungry’, ’dies’}
% The returned value is a two-element cell array, where the first
% element next state of the pet, and the second element
% is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, ’absent’};

switch(state)
case ’happy’

switch(in)
case ’pet’

r = {state, ’purrs’};
case ’feed’
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r = {state, ’throws up’};
case ’time passes’

r = {’hungry’, ’rubs’};
end

case ’hungry’
switch(in)
case ’feed’

r = {’happy’, ’purrs’};
case ’pet’

r = {state, ’bites’};
case ’time passes’

r = {’dies’, ’dies’};
end

case ’dies’
r = {state, ’dies’};

end

Here is a modified program to run the pet (without the driver):

% RUNPET - Execute the virtual pet state machine

% initial state.
petstate=’happy’;

% loop forever.
while 1

% Get the user input as a string.
str=input(’enter one of absent, pet, feed, time passes: ’,’s’);

% If the user entered quit or exit, then break the loop.
if strcmp(str,’quit’) break; end
if strcmp(str,’exit’) break; end

% Update the pet.
r = petUpdates(petstate, str);
petstate = r{1};

% print what the pet does.
disp(r{2})
if strcmp(petstate, ’dies’) break; end

end

4. Only one line changes:

% PETUPDATES - A function representing the state update of a vir-
tual pet.
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% The first argument must be in {’absent’, ’pet’, ’feed’, ’time passes’}
% The second argument must be in {’happy’, ’hungry’, ’dies’}
% The returned value is a two-element cell array, where the first
% element next state of the pet, and the second element
% is the output of the state machine.

function r = pet(state, in)

% The default behavior is to stutter.
r = {state, ’absent’};

switch(state)
case ’happy’

switch(in)
case ’pet’

r = {state, ’purrs’};
case ’feed’

r = {state, ’throws up’};
case ’time passes’

r = {’hungry’, ’rubs’};
end

case ’hungry’
switch(in)
case ’feed’

r = {’happy’, ’purrs’; ’hungry’, ’rubs’};
case ’pet’

r = {state, ’bites’};
case ’time passes’

r = {’dies’, ’dies’};
end

case ’dies’
r = {state, ’dies’};

end

In the program that runs the cat, again, only one line changes:

% RUNPET - Execute the virtual pet state machine

% initial state.
petstate=’happy’;

% loop forever.
while 1

% Get the user input as a string.
str=input(’enter one of absent, pet, feed, time passes: ’,’s’);
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% If the user entered quit or exit, then break the loop.
if strcmp(str,’quit’) break; end
if strcmp(str,’exit’) break; end

% Update the pet.
r = chooserow(petUpdates(petstate, str));
petstate = r{1};

% print what the pet does.
disp(r{2})
if strcmp(petstate, ’dies’) break; end

end

Here is a sample run:

>> runpet
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: feed
purrs
enter one of absent, pet, feed, time passes: time passes
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
rubs
enter one of absent, pet, feed, time passes: feed
purrs

5. Here is a modification of the cascade composition that uses the nondeterminstic cat instead of
the deterministic one:

% DRIVEPET - Execute the virtual pet state machine composed
% in cascade with the driver state machine.

% initial state.
driverstate=’happy’;
petstate=’happy’;

% loop 10 times, since this is automatically driven.
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for i=1:10,
% Update the state of the driver and get its output.
% The input to the driver is always ’1’.
[driverstate, petinput] = driver(driverstate, ’1’);

% update the state of the pet and get its output.
r = chooserow(petUpdates(petstate, petinput));
petstate = r{1};

% Display the output of the pet.
disp(r{2})

end

Here is a typical run:

>> drivepet
rubs
purrs
rubs
purrs
rubs
purrs
rubs
rubs
dies
dies

Inevitably, we get two ’rubs’ in a row and the cat dies.
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