
446 APPENDIX C. LABORATORY EXERCISES

C.6 Differential equations

The purpose of this lab is to experiment with models of continuous-time systems that are described
as differential equations. The exercises aim to solidify state-space concepts while giving some
experience with software that models continuous-time systems.

The lab uses Simulink, a companion to Matlab. The lab is self contained, in the sense that no
additional documentation for Simulink is needed. Instead, we rely on the on-line help facilities. Be
warned, however, that these are not as good for Simulink as for Matlab. The lab exercise will guide
you, trying to steer clear of the more confusing parts of Simulink.

Simulink is a block-diagram modeling environment. As such, it has a more declarative flavor than
Matlab, which is imperative. You do not specify exactly how signals are computed in Simulink. You
simply connect together blocks that represent systems. These blocks declare a relationship between
the input signal and the output signal.

Simulink excels at modeling continuous-time systems. Of course, continuous-time systems are not
directly realizable on a computer, so Simulink must simulate the system. There is quite a bit of
sophistication in how this is done. The fact that you do not specify how it is done underscores the
observation that Simulink has a declarative flavor.

The simulation is carried out by a solver, which examines the block diagram you have specified
and constructs an execution that simulates its behavior. As you read the documentation and interact
with the software, you will see various references to the solver. In fact, Simulink provides a variety
of solvers, and many of these have parameters you can control. Indeed, simulation of continuous-
time systems is generally inexact, and some solvers work better on some models than others. The
models that we will construct work well with the default solver, so we need not be concerned with
this (considerable) complication.

Simulink can also model discrete-time systems, and (a bit clumsily) mixed discrete and continuous-
time systems. We will emphasize the continuous-time modeling because this cannot be done (con-
veniently) in Matlab, and it is really the strong suit of Simulink.

C.6.1 Background

To run Simulink, start Matlab and type simulink at the command prompt. This will open the
Simulink library browser. To explore Simulink demos, at the Matlab command prompt, type demo,
and then find the Simulink item in the list that appears. To get an orientation about Simulink, open
the help desk (using the Help menu), and find Simulink. Much of what is in the help desk will not
be very useful to you. Find a section with a title “Building a Simple Model” or something similar
and read that.

We will build models in state-space form, as in chapter 5, and as in the previous lab, but in con-
tinuous time. A continuous-time state-space model for a linear system has the form (see section
5.7)

_z(t) = Az(t) + bv(t) (C.1)

C.6. DIFFERENTIAL EQUATIONS 447

w(t) = cz(t) + dv(t) (C.2)

where

� z:Reals! RealsN gives the state response;

� _z(t) is the derivative of z evaluated at t 2 Reals;

� v:Reals! Reals is the input signal; and

� w:Reals! Reals is the output signal.

The input and output are scalars, so the models are SISO , but the state is a vector of dimension N ,
which in general can be larger than one. The derivative of a vector z is simply the vector consisting
of the derivative of each element of the vector.

The principle that we will follow in modeling such a system is to use an Integrator block, which
looks like this in Simulink:

s

1

Integrator

This block can be found in the library browser under “Simulink” and “Continuous.” Create a new
model by clicking on the blank-document icon at the upper left of the library browser, and drag an
integrator into it. You should see the same icon as above.

If the input to the integrator is _z, then the output is z (just think about what happens when you
integrate a derivative). Thus, the pattern we will follow is to provide as the input to this block a
signal _z.

We begin with a one-dimensional system (N = 1) in order to get familiar with Simulink. Consider
the scalar differential equation

_z(t) = az(t) (C.3)

where a 2 Reals is a given scalar and z:Reals ! Reals and z(0) is some given initial state. We
will set things up so that the input to the integrator is _z and the output is z. To provide the input,
however, we need the output, since _z(t) = az(t). So we need to construct a feedback system that
looks like this:

s

1

Integrator

1

Gain

This model seems self-referential, and in fact it is, just as is (C.3).

Construct the above model. You can find the triangular “Gain” block in the library browser under
“Simulink” and “Math.” To connect the blocks, simply place the cursor on an output port and click
and drag to an input port.

448 APPENDIX C. LABORATORY EXERCISES

After constructing the feedback arc, you will likely see the following:

s

1

Integrator

1

Gain

This is simply because Simulink is not very smart about routing your wires. You can stretch the
feedback wire by clicking on it and dragging downwards so that it does not go over top of the
blocks.

This model, of course, has no inputs, no initial state, and no outputs, so will not be very interesting
to run it. You can set the initial state by double clicking on the integrator and filling in a value under
“initial condition.” Set the initial state to 1. Why is the initial state a property of the integrator?
Because its output at time t is the state at time t. The “initial condition” parameter gives the output
of the integrator when the model starts executing. Just like the feedback compositions of state ma-
chines in chapter 4, we need at least one block in the feedback loop whose output can be determined
without knowing its input.

You will want to observe the output. To do this, find a block called “Scope” under “Simulink” and
“Sinks” in the library browser, and drag it into your design. Connect it so that it displays the output
of the integrator, as follows:

Scope

s

1

Integrator

1

Gain

To make the connection, you need to hold the Control key while dragging from the output port of
the integrator to the input port of the Scope. We are done with the basic construction of the model.
Now we can experiment with it.

C.6.2 In-lab section

1. Set the gain of the gain block by double clicking on the triangular icon. Set it to �0:9. What
value of a does this give you in the equation (C.3)?

2. Run the model for 10 time units (the default). To run the model, choose “Start” under the
“Simulation” menu of the model window. To control the number of time units for the simula-
tion, choose “Parameters” under the “Simulation” menu. To examine the result, double click
on the Scope icon. Clicking on the binoculars icon in the scope window will result in a better
display of the result.

C.6. DIFFERENTIAL EQUATIONS 449

3. Write down analytically the function z given by this model. You can guess its form by exam-
ining the simulation result. Verify that it satisfies (C.3) by differentiating.

4. Change the gain block to have value 0:9 instead of�0:9 and re-run the model. What happens?
Is the system stable? (Stable means that if the input is bounded for all time, then the output
is bounded for all time. In this case, clearly the input is bounded since it is zero.) Give an
analytical formula for z for this model.

5. Experiment with values of the gain parameter. Determine over what range of values the
system is stable.

C.6.3 Independent section

Continuous-time linear state-space models are reasonable for some musical instruments. In this
exercise, we will simulate an idealized and a more realistic tuning fork, which is a particularly
simple instrument to model. The model will be two-dimensional continuous-time state-space model.

Consider the state and output equations (C.1) and (C.2). Since the model is two dimensional, the
state at each time is now a two-dimensional vector. The “initial condition” parameter of the Inte-
grator block in Simulink can be given a vector. Set the initial value to the column vector

z(0) =

"
1
0

#
: (C.4)

The factor A must be a 2 � 2 matrix if the state is a two dimensional column vector. Unfortu-
nately, the Gain block in Simulink cannot be given a matrix parameter. You must replace the Gain
block with the MatrixGain block, also found in the “Math” library under “Simulink” in the library
browser.

At first, we will assume there is no input, and we will examine the state response. Thus, we are only
concerned at first with the simplified state equation

_z(t) = Az(t): (C.5)

Recall that in chapter 2, equation (2.11) states that the displacement x(t) at time t of a tine of the
tuning fork satisfies the differential equation

�x(t) = �!20x(t)
where !0 is constant that depends on the mass and stiffness of the tine, and and where �x(t) denotes
the second derivative with respect to time of x (see box on page56). This does not have the form of
(C.5). However, we can put it in that form using a simple trick. Let

z(t) =

"
x(t)
_x(t)

#

and observe that

_z(t) =

"
_x(t)
�x(t)

#
:

450 APPENDIX C. LABORATORY EXERCISES

Thus, we can write (C.5) as

_z(t) =

"
_x(t)
�x(t)

#
=

"
a1;1 a1;2
a2;1 a2;2

"
x(t)
_x(t)

#

for suitably chosen constants a1;1, a1;2, a2;1, and a2;2.

1. Find a1;1, a1;2, a2;1, and a2;2 for the tuning fork model.

2. Use Simulink to plot the state response of the tuning fork when the initial state is given by
(C.4). You will have to pick a value of !0. Use Simulink to help you find a value of !0 so
that the state completes one cycle in 10 time units. Each sample of the state response has two
elements. These represent the displacement and speed, respectively, of the tuning fork tine in
the model. The displacement is what directly translates into sound.

3. Change !0 so that the state has a frequency of 440 Hz, assuming the time units are seconds.
Change the simulation parameters so that you run the model through 5 complete cycles.

4. Change the simulation parameters so that you run the model through 1 second. Use the
Simulink To Workspace block to write the result to the workspace, and then use the Matlab
soundsc function to listen to it. Note: You will need to set the sample time parameter of the
To Workspace block to 1/8000. You will also need to specify that the save format should be a
matrix. For your lab report, print your block diagram and annotate it with all the parameters
that have values different from the defaults.

5. In practice, a tuning fork will not oscillate forever as the model does. We can add damping
by modifying the matrix A. Try replacing the zero value of a2;2 with �10. What happens to
the sound? This is called damping. Experiment with different values for a2;2. Describe how
the different values affect the sound. Determine (experimentally) for what values of a2;2 the
system is stable.

6. A tuning fork is not much of a musical instrument. Its sound is too pure (spectrally). A
guitar string, however, operates on similar principles as the tuning fork, but has a much more
appealing sound.

A tuning fork vibrates with only one mode. A guitar string, however, vibrates with multiple
modes, as illustrated in figure C.5. Each of these vibrations produces a different frequency.
The top one in the figure produces the lowest frequency, called the fundamental, which is
typically the frequency of the note being played, such as 440 Hz for A-440. The next mode
produces a component of the sound at twice that frequency, 880 Hz; this component is called
the first harmonic. The third produces three times the frequency, 1320 Hz, and the fourth
produces four times the fundamental, 1760 Hz; these components are the second and third
harmonics.

If the guitar string is undamped, and the fundamental frequency is f0 Hz, then the the com-
bined sound is a linear combination of the fundamental and the three (or more) harmonics.
This can be written as a continuous-time function y where for all t 2 Reals,

y(t) =
NX
k=0

cksin(2�fkt)

C.6. DIFFERENTIAL EQUATIONS 451

Figure C.5: Four modes of vibration of a guitar string.

where N is the number of harmonics and ck gives the relative weights of these harmonics.
The values of ck will depend on the guitar construction and how it is played, and affect the
timbre of the sound.

The model you have constructed above generates a damped sinusoid at 440 Hz. Create a
Simulink model that produces a fundamental of 440 Hz plus three harmonics. Experiment
with the amplitudes of the harmonics relative to the fundamental, as well as with the rates
of decay of the four components. Note how the quality of the sound changes. Your report
should include a printout of your model with the parameter values that you have chosen to
get a sound like that of a plucked string.

452 APPENDIX C. LABORATORY EXERCISES

Instructor Verification Sheet for C.6

Name: Date:

1. Value of a.

Instructor verification:

2. Plot of the state response.

Instructor verification:

3. Formula for function z. Verified by differentiating.

Instructor verification:

4. Formula for function z.

Instructor verification:

5. Range of values for the gain over which the system is stable.

Instructor verification:

	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises

	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations

	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels

	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates

	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section

	Index

