C.4. CONTROL SYSTEMS 437
C.4 Control systems

This lab extends the previous one by introducing nondeterminism and feedback. In particular, you
will modify the virtual pet that you constructed last time so that it behaves nondeterministically. The
modification will make it impossible to keep the pet alive by driving it with another state machine
in a cascade composition. You will instead have to use a feedback composition.

This scenario istypical of acontrol problem. The pet is asystem to be controlled, with the objective
of keeping it alive. You will construct a controller that observes the output of the virtual pet, and
based on that output, constructs an appropriate input that will keep the pet alive. Sincethis controller
observes the output of the pet, and provides input to the pet, it is called a closed-loop controller.

C.4.1 Background

Nondeterministic state machines have a possibleUpdates function rather than an update function.
The possibleUpdates function returns a set of possible updates. You will construct this function to
return acell array, which was explored in the previous lab.

A software implementation of a nondeterministic state machine can randomly choose from among
the results returned by possibleUpdates. It could conceptualy flip coins to determine which result
to choose each time. In software, the equivalent of coin flips is obtained through pseudo-random
number generators. The Matlab function r and is just such a pseudo-random number generator.
The way that it works isthat each time you useit, it gives you anew number (try hel p rand).

For this lab, you will need to be able to use cell arrays in more sophisticated ways than in the
previous lab. Recall that a cell array is like an ordinary array, except that the elements of the array
can be arbitrary Matlab objects, including strings, arrays, or even cell arrays. A cell array can be
constructed using curly braces instead of square brackets, asin

>> |etters = {"a, 'b, "¢, 'd, 'e};

>> whos letters
Nane Size Bytes d ass
letters 1x5 470 cell array

Grand total is 10 elenments using 470 bytes

The elements of the cell array can be accessed like elements of any other array, but there is one
subtlety. If you access an element in the usual way, the result is a cell array, which might not be
what you expect. For example,

>> x = letters(2)

X =

438 APPENDIX C. LABORATORY EXERCISES

i) bl
>> whos x
Nane Size Bytes d ass
X 1x1 94 cell array

Grand total is 2 elenents using 94 bytes

To access the element as a string (or whatever the element happens to be), then use curly braces
when indexing the array, asin

>>y = |etters{2}

y =
b
>> whos vy

Nane Si ze Bytes d ass

y 1x1 2 char array

Grand total is 1 elenments using 2 bytes

Notice that now the result is a character array rather thana1 x 1 cell array.

You can aso use curly braces to construct a cell array piece by piece. Here, for example, we
construct and display a two-dimensional cell array of strings, and then access one of the elements
asastring.

>> t{1,1} = ’upper left’;

>> t{1,2} = 'upper right’;

>> t{2,1} = lower left’;

>> t{2,2} = 'lower right’;

>>

t =
"upper |eft’ "upper right’
"lower left’ "l ower right’

>> t{2, 1}

ans =

C.4. CONTROL SYSTEMS 439

| ower |eft
You can find out the size of acell array in the usual way for arrays

>> [rows, cols] = size(t)

r ows

col s

You can also extract an entire row or column from the cell array the same way you do it for ordinary
arrays, using ’:’ in place of the index. For example, to get the first row, do

t(1,:)
ans =

"upper left’ "upper right’

C.4.2 In-lab section

1. Construct a Matlab function sel ect that, given a cell array with one row as an argument,
returns a randomly chosen element of the cell array. Use your function to generate a random
sequence of 10 letters from the cell array

>> |etters = {'a’, 'b, "¢, 'd, "e};
Hint: The Matlab function f | oor combined with r and might prove useful to get random
indexes into the cell array.

2. Construct a Matlab function chooser ow that, given a cell array with one or more rows,
randomly chooses one of the rows and returns it as a cell array. Apply your function a few
timestothe’t ' array that we constructed above.

3. A nondeterministic state machine has a possibleUpdates function rather than updates. This
function returns a set of pairs, where each pair is anew state and an output.

440 APPENDIX C. LABORATORY EXERCISES

A convenient Matlab implementation is a function that returns a two-dimensional cell array,
with each of the possible updates on one row. As a first step towards this, modify your
realization of the update function for the virtual cat of the previous lab so that it returns a
1 x 2 cell array with the next state and output. Also modify your program that runs the cat
(without the driver) so that it uses your new function. Verify that the cat till works properly.

4. Now modify the cat’s behavior so that if it is hungry and you feed it, it sometimes gets happy
and purrs (as it did before), but it sometimes stays hungry and rubs against your legs. 1.e.,
change your update function so that if the state is hungry and you feed the cat, then return a
2 x 2 cell array where the two rows specify the two possible next state, output pairs. Modify
the program that runs the cat to use your chooser owfunction to choose from among the
options.

5. Compose your driver machine from the previous lab with your nondeterministic cat, and
verify that the driver no longer keeps the cat alive. In fact, no open-loop controller will be
able to keep the cat alive and allow time to pass. In the independent section of this lab, you
will construct a closed-loop controller that keeps the cat aive. It is afeedback composition
of state machines.

C.4.3 Independent section

Design a deterministic state machine that you can put into a feedback composition with your non-
deterministic cat so that the cat is kept alive and time passes. Give the state transition diagram for
your state machine and write a Matlab function that implements its update function. Write aMatlab
program that implements the feedback composition.

Note that your program that implements the feedback composition faces a challenging problem.
When the program starts, neither the inputs to the controller machine nor the inputs to the cat
machine are available. So neither machine can react. For your controller machine, you should
define Matlab functions for both update, which requires a known input, and output, which does
not. The output function, given the current state, returns the output that will be produced by the
next reaction, if it is known, or unknown if it is not known. In the case of your controller, it should
aways be known, or the feedback composition will not be well formed.

Verify (by running your program) that the cat does not die.

Pravin Varaiya
next state not update
the composition may be\
nondeterministic ...
wellformed

C.4. CONTROL SYSTEMS 441

I nstructor Verification Sheet for C.4

Name: Date:

1. Generated random sequence of lettersusing ' sel ect’ .

Instructor verification:

2. Applied chooser owtothe't ' array.

Instructor verification:

3. The cat still works with the update function returning a cell array.

Instructor verification:

4. The nondeterministic sometimes stays hungry when fed.

Instructor verification:

5. The nondeterministic cat dies under open-loop contral.

Instructor verification:

	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises

	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations

	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels

	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates

	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section

	Index

