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C.4 Control systems

This lab extends the previous one by introducing nondeterminism and feedback. In particular, you
will modify the virtual pet that you constructed last time so that it behaves nondeterministically. The
modification will make it impossible to keep the pet alive by driving it with another state machine
in a cascade composition. You will instead have to use a feedback composition.

This scenario istypical of acontrol problem. The pet is asystem to be controlled, with the objective
of keeping it alive. You will construct a controller that observes the output of the virtual pet, and
based on that output, constructs an appropriate input that will keep the pet alive. Sincethis controller
observes the output of the pet, and provides input to the pet, it is called a closed-loop controller.

C.4.1 Background

Nondeterministic state machines have a possibleUpdates function rather than an update function.
The possibleUpdates function returns a set of possible updates. You will construct this function to
return acell array, which was explored in the previous lab.

A software implementation of a nondeterministic state machine can randomly choose from among
the results returned by possibleUpdates. It could conceptualy flip coins to determine which result
to choose each time. In software, the equivalent of coin flips is obtained through pseudo-random
number generators. The Matlab function r and is just such a pseudo-random number generator.
The way that it works isthat each time you useit, it gives you anew number (try hel p rand).

For this lab, you will need to be able to use cell arrays in more sophisticated ways than in the
previous lab. Recall that a cell array is like an ordinary array, except that the elements of the array
can be arbitrary Matlab objects, including strings, arrays, or even cell arrays. A cell array can be
constructed using curly braces instead of square brackets, asin

>> |etters = {"a, 'b, "¢, 'd, 'e};

>> whos letters
Nane Size Bytes d ass
letters 1x5 470 cell array

Grand total is 10 elenments using 470 bytes

The elements of the cell array can be accessed like elements of any other array, but there is one
subtlety. If you access an element in the usual way, the result is a cell array, which might not be
what you expect. For example,

>> x = letters(2)

X =
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i) bl
>> whos x
Nane Size Bytes d ass
X 1x1 94 cell array

Grand total is 2 elenents using 94 bytes

To access the element as a string (or whatever the element happens to be), then use curly braces
when indexing the array, asin

>>y = |etters{2}

y =
b
>> whos vy

Nane Si ze Bytes d ass

y 1x1 2 char array

Grand total is 1 elenments using 2 bytes

Notice that now the result is a character array rather thana1 x 1 cell array.

You can aso use curly braces to construct a cell array piece by piece. Here, for example, we
construct and display a two-dimensional cell array of strings, and then access one of the elements
asastring.

>> t{1,1} = ’upper left’;

>> t{1,2} = 'upper right’;

>> t{2,1} = lower left’;

>> t{2,2} = 'lower right’;

>>

t =
"upper |eft’ "upper right’
"lower left’ "l ower right’

>> t{2, 1}

ans =
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| ower |eft
You can find out the size of acell array in the usual way for arrays

>> [rows, cols] = size(t)

r ows

col s

You can also extract an entire row or column from the cell array the same way you do it for ordinary
arrays, using ’:’ in place of the index. For example, to get the first row, do

t(1,:)
ans =

"upper left’ "upper right’

C.4.2 In-lab section

1. Construct a Matlab function sel ect that, given a cell array with one row as an argument,
returns a randomly chosen element of the cell array. Use your function to generate a random
sequence of 10 letters from the cell array

>> |etters = {'a’, 'b, "¢, 'd, "e};
Hint: The Matlab function f | oor combined with r and might prove useful to get random
indexes into the cell array.

2. Construct a Matlab function chooser ow that, given a cell array with one or more rows,
randomly chooses one of the rows and returns it as a cell array. Apply your function a few
timestothe’t ' array that we constructed above.

3. A nondeterministic state machine has a possibleUpdates function rather than updates. This
function returns a set of pairs, where each pair is anew state and an output.
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A convenient Matlab implementation is a function that returns a two-dimensional cell array,
with each of the possible updates on one row. As a first step towards this, modify your
realization of the update function for the virtual cat of the previous lab so that it returns a
1 x 2 cell array with the next state and output. Also modify your program that runs the cat
(without the driver) so that it uses your new function. Verify that the cat till works properly.

4. Now modify the cat’s behavior so that if it is hungry and you feed it, it sometimes gets happy
and purrs (as it did before), but it sometimes stays hungry and rubs against your legs. 1.e.,
change your update function so that if the state is hungry and you feed the cat, then return a
2 x 2 cell array where the two rows specify the two possible next state, output pairs. Modify
the program that runs the cat to use your chooser owfunction to choose from among the
options.

5. Compose your driver machine from the previous lab with your nondeterministic cat, and
verify that the driver no longer keeps the cat alive. In fact, no open-loop controller will be
able to keep the cat alive and allow time to pass. In the independent section of this lab, you
will construct a closed-loop controller that keeps the cat aive. It is afeedback composition
of state machines.

C.4.3 Independent section

Design a deterministic state machine that you can put into a feedback composition with your non-
deterministic cat so that the cat is kept alive and time passes. Give the state transition diagram for
your state machine and write a Matlab function that implements its update function. Write aMatlab
program that implements the feedback composition.

Note that your program that implements the feedback composition faces a challenging problem.
When the program starts, neither the inputs to the controller machine nor the inputs to the cat
machine are available. So neither machine can react. For your controller machine, you should
define Matlab functions for both update, which requires a known input, and output, which does
not. The output function, given the current state, returns the output that will be produced by the
next reaction, if it is known, or unknown if it is not known. In the case of your controller, it should
aways be known, or the feedback composition will not be well formed.

Verify (by running your program) that the cat does not die.


Pravin Varaiya
next state not update
the composition may be\
nondeterministic ...
wellformed
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I nstructor Verification Sheet for C.4

Name: Date:

1. Generated random sequence of lettersusing ' sel ect’ .

Instructor verification:

2. Applied chooser owtothe't ' array.

Instructor verification:

3. The cat still works with the update function returning a cell array.

Instructor verification:

4. The nondeterministic sometimes stays hungry when fed.

Instructor verification:

5. The nondeterministic cat dies under open-loop contral.

Instructor verification:
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