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C.3 State machines

State machines are sequential. They begin in a starting state, and react to a sequence of inputs by
sequentially transitioning between states. Implementation of state machines in software is fairly
straightforward. In this lab, we explore doing this systematically, and build up to an implementation
that composes two state machines.

C.3.1 Background

Strings in Matlab

State machines operate on sequences of symbols from an alphabet. Sometimes, the alphabet is
numeric, but more commonly, it is a set of arbitrary elements with names that suggest their meaning.
For example, the input set for the answering machine in figure3.1 is

Inputs = fring; offhook; end greeting; end message; absentg:
Each element of the above set can be represented in Matlab as a string (try help strings).
Strings are surrounded by single quotes. For example,

>> x = ’ring’;

The string itself is an array of characters, so you can index individual characters, as in

>> x(1:3)

ans =

rin

You can join strings just as you join ordinary arrays,

>> y = ’the’;
>> z = ’bell’;
>> [x, y, z]

ans =

ringthebell

However, this is not necessarily what you want. You may want instead to construct an array of
strings, where each element of the array is a string (rather than a character). Such a collection of
strings can be represented in Matlab as a cell array,
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>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};

Notice the curly braces instead of the usual square braces. A cell array in Matlab is an array where
the elements of the array are arbitrary Matlab objects (such as strings and arrays). Cell arrays are
indexed like ordinary arrays, so

>> c(1)

ans =

’ring’

Often, you wish to test a string to see whether it is equal to some string. You usually cannot compare
strings or cells of a cell array using ==, as illustrated here:

>> c = ’ring’;
>> if (c == ’offhook’) result = 1; end
??? Error using ==> ==
Array dimensions must match for binary array op.

>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};
>> if (c(1) == ’ring’) result = 1; end
??? Error using ==> ==
Function ’==’ not defined for variables of class ’cell’.

Strings should instead be compared using strcmp or switch (see the on-line help for these
commands).

M-files

In Matlab, you can save programs in a file and execute them from the command line. The file
is called an m-file, and has a name of the form command.m, where command is the name of the
command that you enter on the command line to execute the program.

You can use any text editor to create and edit m-files, but the one built into Matlab is probably the
most convenient. To invoke it, select “New” and “M-file” under the “File” menu.

To execute your program, Matlab needs to know where to find your file. The simplest way to handle
this is to make the current directory in Matlab the same as the directory storing the m-file. For
example, if you put your file in the directory

D:\users\eal

then the following will make the file visible to Matlab
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>> cd D:\users\eal
>> pwd

ans =

D:\users\eal

The cd command instructs Matlab to change the current working directory. The pwd command
returns the current working directory (probably the mnemonic is present working directory).

You can instruct Matlab to search through some sequence of directories for your m-files, so that they
do not have to all be in the same directory. See help path. For example, instead of changing
the current directory, you could type

path(path, ’D:\users\eal’);

This command tells Matlab to search for functions wherever it was searching before (the first argu-
ment path) and also in the new directory.

Suppose you create a file called hello.m containing

% HELLO - Say hello.
disp(’Hello’);

The first line is a comment. The disp command displays its argument without displaying a variable
name. On the command line, you can execute this

>> hello
Hello

Command names are not case sensitive, so HELLO is the same as Hello and hello. The comment
in the file is used by Matlab to provide on-line help. Thus,

>> help hello

HELLO - Say hello.

The M-file above is a program, not a function. There is no returned value. To define a function, use
the function command in your m-file. For example, store the following in in a file reverse.m:

function result = reverse(argument)
% REVERSE - return the argument array reversed.
result = argument(length(argument):-1:1);
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Then try:

>> reverse(’hello’)

ans =

olleh

The returned value is the string argument reversed.

A function can have any number of arguments and returned values. To define a function with two
arguments, use the syntax

function [result1, result2] = myfunction(arg1, arg2)

and then assign values to result1 and result2 in the body of the file. To use such function,
you must assign each of the return values to a variable as follows:

>> [r1, r2] = myfunction(a1, a2);

The names of the arguments and result variables are arbitrary.

C.3.2 In-lab section

1. Write a for loop that counts the number of occurrences of ’a’ in

>> d = {’a’ ’b’ ’a’ ’a’ ’b’};

Then define a function count that counts the number of occurrences of ’a’ in any argument.
How many occurrences are there in the following two examples?

>> x = [’a’, ’b’, ’c’, ’a’, ’aa’];
>> y = {’a’, ’b’, ’c’, ’a’, ’aa’};
>> count(x)

ans =

??

>> count(y)

ans =

??
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{1} / 0

{0} / 1

{0} / 0 {1} / 1

Inputs = {0, 1, absent}
Outputs = {0, 1, absent}

Figure C.4: A simple state machine.

Why are they different?

2. The input function can be used to interactively query the user for input. Write a program
that repeatedly asks the user for a string and then uses your count function to report the
number of occurrences of ’a’ in the string. Write the program so that if the user enters
quit or exit, the program exits, and otherwise, it asks for another input. Hint: Try help
while and help break.

3. Consider the state machine in figure C.4. Construct an m-file containing a definition of its
update function. Then construct an m-file containing a program that queries the user for an
input, then if the input is in the input alphabet of the machine, uses it to react, and then asks
the user for another input. If the input is not in the input alphabet, the program should assume
the input is absent and stutter. Be sure that your update function handles stuttering.

C.3.3 Independent section

1. Design a virtual pet,1 in this case a cat, by constructing a state machine, writing an update
function, and writing a program to repeatedly execute the function, as in (3) above. The cat
should behave as follows:

It starts out happy. If you pet it, it purrs. If you feed it, it throws up. If time passes,
it gets hungry and rubs against your legs. If you feed it when it is hungry, it purrs
and gets happy. If you pet it when it is hungry, it bites you. If time passes when it
is hungry, it dies.

The italicized phrases in this description should be elements in either the state space or the
input or output alphabets. Give the input and output alphabets and a state transition diagram.
Define the update function in Matlab, and write a program to execute the state machine until
the user types ’quit’ or ’exit.’

1This problem is inspired by the Tamagotchi virtual pet made by Bandai in Japan. Tamagotchi which translates
as ”cute little egg,” were extremely popular in the late 1990’s, and had behavior considerably more complex than that
described in this exercise.
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2. Construct a state machine that provides inputs to your virtual cat so that the cat never dies.
In particular, your state machine should generate time passes and feed outputs in such a way
that the cat never reaches the dies state.

Note that this state machine does not have particularly meaningful inputs. You can let the
input alphabet be

Inputs = f1; absentg
where an input of 1 indicates that the machine should output a non-stuttering output, and an
input of absent means it should output a stuttering output.

Write a program where your feeder state machine is composed in cascade with your cat state
machine, and verify (experimentally) that the cat does not die. Your state machine should
allow time to pass (by producing an infinite number of ’time passes’ outputs) but should
otherwise be as simple as possible.

Note that a major point of this exercise is to show that systematically constructed state ma-
chines can be very easily composed.

The feeder state machine is called an open-loop controller because it controls the pet without
observing the output of the pet. For most practical systems, it is not possible to design an
open-loop controller. The next lab explores closed-loop controllers.
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Instructor Verification Sheet for C.3

Name: Date:

1. Count the number of occurrences of ’a’. Understand the difference between a cell array and
an array.

Instructor verification:

2. Write a program with an infinite loop and user input.

Instructor verification:

3. Construct and use update function.

Instructor verification:
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