
430 APPENDIX C. LABORATORY EXERCISES

C.3 State machines

State machines are sequential. They begin in a starting state, and react to a sequence of inputs by
sequentially transitioning between states. Implementation of state machines in software is fairly
straightforward. In this lab, we explore doing this systematically, and build up to an implementation
that composes two state machines.

C.3.1 Background

Strings in Matlab

State machines operate on sequences of symbols from an alphabet. Sometimes, the alphabet is
numeric, but more commonly, it is a set of arbitrary elements with names that suggest their meaning.
For example, the input set for the answering machine in figure3.1 is

Inputs = fring; offhook; end greeting; end message; absentg:
Each element of the above set can be represented in Matlab as a string (try help strings).
Strings are surrounded by single quotes. For example,

>> x = ’ring’;

The string itself is an array of characters, so you can index individual characters, as in

>> x(1:3)

ans =

rin

You can join strings just as you join ordinary arrays,

>> y = ’the’;
>> z = ’bell’;
>> [x, y, z]

ans =

ringthebell

However, this is not necessarily what you want. You may want instead to construct an array of
strings, where each element of the array is a string (rather than a character). Such a collection of
strings can be represented in Matlab as a cell array,



C.3. STATE MACHINES 431

>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};

Notice the curly braces instead of the usual square braces. A cell array in Matlab is an array where
the elements of the array are arbitrary Matlab objects (such as strings and arrays). Cell arrays are
indexed like ordinary arrays, so

>> c(1)

ans =

’ring’

Often, you wish to test a string to see whether it is equal to some string. You usually cannot compare
strings or cells of a cell array using ==, as illustrated here:

>> c = ’ring’;
>> if (c == ’offhook’) result = 1; end
??? Error using ==> ==
Array dimensions must match for binary array op.

>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};
>> if (c(1) == ’ring’) result = 1; end
??? Error using ==> ==
Function ’==’ not defined for variables of class ’cell’.

Strings should instead be compared using strcmp or switch (see the on-line help for these
commands).

M-files

In Matlab, you can save programs in a file and execute them from the command line. The file
is called an m-file, and has a name of the form command.m, where command is the name of the
command that you enter on the command line to execute the program.

You can use any text editor to create and edit m-files, but the one built into Matlab is probably the
most convenient. To invoke it, select “New” and “M-file” under the “File” menu.

To execute your program, Matlab needs to know where to find your file. The simplest way to handle
this is to make the current directory in Matlab the same as the directory storing the m-file. For
example, if you put your file in the directory

D:\users\eal

then the following will make the file visible to Matlab



432 APPENDIX C. LABORATORY EXERCISES

>> cd D:\users\eal
>> pwd

ans =

D:\users\eal

The cd command instructs Matlab to change the current working directory. The pwd command
returns the current working directory (probably the mnemonic is present working directory).

You can instruct Matlab to search through some sequence of directories for your m-files, so that they
do not have to all be in the same directory. See help path. For example, instead of changing
the current directory, you could type

path(path, ’D:\users\eal’);

This command tells Matlab to search for functions wherever it was searching before (the first argu-
ment path) and also in the new directory.

Suppose you create a file called hello.m containing

% HELLO - Say hello.
disp(’Hello’);

The first line is a comment. The disp command displays its argument without displaying a variable
name. On the command line, you can execute this

>> hello
Hello

Command names are not case sensitive, so HELLO is the same as Hello and hello. The comment
in the file is used by Matlab to provide on-line help. Thus,

>> help hello

HELLO - Say hello.

The M-file above is a program, not a function. There is no returned value. To define a function, use
the function command in your m-file. For example, store the following in in a file reverse.m:

function result = reverse(argument)
% REVERSE - return the argument array reversed.
result = argument(length(argument):-1:1);



C.3. STATE MACHINES 433

Then try:

>> reverse(’hello’)

ans =

olleh

The returned value is the string argument reversed.

A function can have any number of arguments and returned values. To define a function with two
arguments, use the syntax

function [result1, result2] = myfunction(arg1, arg2)

and then assign values to result1 and result2 in the body of the file. To use such function,
you must assign each of the return values to a variable as follows:

>> [r1, r2] = myfunction(a1, a2);

The names of the arguments and result variables are arbitrary.

C.3.2 In-lab section

1. Write a for loop that counts the number of occurrences of ’a’ in

>> d = {’a’ ’b’ ’a’ ’a’ ’b’};

Then define a function count that counts the number of occurrences of ’a’ in any argument.
How many occurrences are there in the following two examples?

>> x = [’a’, ’b’, ’c’, ’a’, ’aa’];
>> y = {’a’, ’b’, ’c’, ’a’, ’aa’};
>> count(x)

ans =

??

>> count(y)

ans =

??



434 APPENDIX C. LABORATORY EXERCISES

0 1

{1} / 0

{0} / 1

{0} / 0 {1} / 1

Inputs = {0, 1, absent}
Outputs = {0, 1, absent}

Figure C.4: A simple state machine.

Why are they different?

2. The input function can be used to interactively query the user for input. Write a program
that repeatedly asks the user for a string and then uses your count function to report the
number of occurrences of ’a’ in the string. Write the program so that if the user enters
quit or exit, the program exits, and otherwise, it asks for another input. Hint: Try help
while and help break.

3. Consider the state machine in figure C.4. Construct an m-file containing a definition of its
update function. Then construct an m-file containing a program that queries the user for an
input, then if the input is in the input alphabet of the machine, uses it to react, and then asks
the user for another input. If the input is not in the input alphabet, the program should assume
the input is absent and stutter. Be sure that your update function handles stuttering.

C.3.3 Independent section

1. Design a virtual pet,1 in this case a cat, by constructing a state machine, writing an update
function, and writing a program to repeatedly execute the function, as in (3) above. The cat
should behave as follows:

It starts out happy. If you pet it, it purrs. If you feed it, it throws up. If time passes,
it gets hungry and rubs against your legs. If you feed it when it is hungry, it purrs
and gets happy. If you pet it when it is hungry, it bites you. If time passes when it
is hungry, it dies.

The italicized phrases in this description should be elements in either the state space or the
input or output alphabets. Give the input and output alphabets and a state transition diagram.
Define the update function in Matlab, and write a program to execute the state machine until
the user types ’quit’ or ’exit.’

1This problem is inspired by the Tamagotchi virtual pet made by Bandai in Japan. Tamagotchi which translates
as ”cute little egg,” were extremely popular in the late 1990’s, and had behavior considerably more complex than that
described in this exercise.



C.3. STATE MACHINES 435

2. Construct a state machine that provides inputs to your virtual cat so that the cat never dies.
In particular, your state machine should generate time passes and feed outputs in such a way
that the cat never reaches the dies state.

Note that this state machine does not have particularly meaningful inputs. You can let the
input alphabet be

Inputs = f1; absentg
where an input of 1 indicates that the machine should output a non-stuttering output, and an
input of absent means it should output a stuttering output.

Write a program where your feeder state machine is composed in cascade with your cat state
machine, and verify (experimentally) that the cat does not die. Your state machine should
allow time to pass (by producing an infinite number of ’time passes’ outputs) but should
otherwise be as simple as possible.

Note that a major point of this exercise is to show that systematically constructed state ma-
chines can be very easily composed.

The feeder state machine is called an open-loop controller because it controls the pet without
observing the output of the pet. For most practical systems, it is not possible to design an
open-loop controller. The next lab explores closed-loop controllers.



436 APPENDIX C. LABORATORY EXERCISES

Instructor Verification Sheet for C.3

Name: Date:

1. Count the number of occurrences of ’a’. Understand the difference between a cell array and
an array.

Instructor verification:

2. Write a program with an infinite loop and user input.

Instructor verification:

3. Construct and use update function.

Instructor verification:


	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork 

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises


	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations


	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels


	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates


	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section


	Index

