
422 APPENDIX C. LABORATORY EXERCISES

C.2 Images

The purpose of this lab to explore images and colormaps. You will create synthetic images and
movies, and you will process a natural image by blurring it and by detecting its edges.

C.2.1 Images in Matlab

Figure C.2 shows a black and white image where the intensity of the image varies sinusoidally in
the vertical direction. The top row of pixels in the image is white. As you move down the image, it
gradually changes to black, and then back to white, completing one cycle. The image is 200 � 200
pixels so the vertical frequency is 1/200 cycles per pixel. The image rendered on the page is about
10 � 10 centimeters, so the vertical frequency is 0.1 cycles per centimeter. The image is constant
horizontally (it has a horizontal frequency of 0 cycles per centimeter).

We begin this lab by constructing the Matlab commands that generate this image. To do this, you
need to know a little about how Matlab represents images. In fact, Matlab is quite versatile with
images, and we will only explore a portion of what it can do.

An image in Matlab can be represented as an array with two dimensions (a matrix) where each
element of the matrix indexes a colormap. Consider for example the image constructed by the
image command:

>> v = [1:64];
>> image(v);

This should create an image like that shown in figureC.3.

The image is 1 pixel high by 64 pixels wide (Matlab, by default, stretches the image to fit the
standard rectangular graphic window, so the one pixel vertically is rendered as a very tall pixel.)
You could use the repmat Matlab function to make an image taller than 1 pixel by just repeating
this row some number of times.

The pixels each have value ranging from 1 to 64. These index the default colormap, which has
length 64 and colors ranging from blue to red through the rainbow. To see the default colormap
numerically, type

>> map = colormap

To verify its size, type

>> size(map)

ans =

64 3



C.2. IMAGES 423

50 100 150 200

20

40

60

80

100

120

140

160

180

200

Figure C.2: An image where the intensity varies sinusoidally in the vertical
direction.

10 20 30 40 50 60

5

10

15

20

25

30

Figure C.3: An image of the default colormap.



424 APPENDIX C. LABORATORY EXERCISES

Notice that it has 64 rows and three columns. Each row is one entry in the colormap. The three
columns give the amounts of red, green, and blue respectively in the colormap. These amounts range
from 0 (none of the color present) to 1.0 (the maximum amount of the color possible). Examine the
colormap to convince yourself that it begins with blue and ends with red.

Change the colormap using the colormap command as follows:

>> map = gray(256);
>> colormap(map);
>> image([1:256]);

Examine the map variable to understand the resulting image. This is called a grayscale colormap.

C.2.2 In-lab section

1. What is the representation in a Matlab colormap for the color white? What about black?

2. Create a 200 � 200 pixel image like that shown in figure C.2. You will want the colormap
set to gray(256), as indicated above. Note that when you display this image using the
image command, it probably will not be square. This is because of the (somewhat annoying)
stretching that Matlab insists on doing to make the image fit the default graphics window. To
disable the stretching and get a square image, issue the command axis image

axis image

As usual with Matlab, a brute-force way to create matrices is to use for loops, but there is
almost always a more elegant (and faster) way that exploits Matlab’s ability to operate on
arrays all at once. Try to avoid using for loops to solve this and subsequent problems.

3. Change your image so that the sinusoidal variations are horizontal rather than vertical. Vary
the frequency so that you get four cycles of the sinusoid instead of one. What is the frequency
of this image?

4. An image can have both vertical and horizontal frequency content at the same time. Change
your image so that the intensity at any point is the sum of a vertical and horizontal sinusoid.
Be careful to stay with the numerical range that indexes the colormap.

5. Get the image file from

http://www.eecs.berkeley.edu/˜eal/eecs20/images/helen.jpg

Save it in some directory where you have write permission with the name “helen.jpg”. (Note:
For reasons that only the engineers at Microsoft could possibly explain, Microsoft Internet
Explorer does not allow you to save this file as a JPEG file, ’.jpg’. It only allows you to save
the file as a bit map, ’.bmp’, which is already decoded. So we recommend using Netscape
rather than IE.)

In Matlab, change the current working directory to that directory using the cd command.
Then use imfinfo to get information about the file, as follows:



C.2. IMAGES 425

>> imfinfo(’helen.jpg’)

ans =

Filename: ’helen.jpg’
FileModDate: ’27-Jan-2000 10:48:16’

FileSize: 18026
Format: ’jpg’

FormatVersion: ’’
Width: 200

Height: 300
BitDepth: 24
ColorType: ’truecolor’

FormatSignature: ’’

Make a note of the file size, which is given in bytes. Then use imread to read the image into
Matlab and display it as follows:

>> helen = imread(’helen.jpg’);
>> image(helen);
>> axis image

Use the whos command to identify the size, in bytes, and the dimensions of the helen array.
Can you infer from this what is meant by ’truecolor’ above? The file is stored in JPEG
format, where JPEG, which stands for Joint Pictures Expert Group, is an image representation
standard. The imread function in Matlab decodes JPEG images. What is the compression
ratio achieved by the JPEG file format (the compression ratio is defined to be size of the
uncompressed data in bytes divided by the size of the compressed data in bytes).

6. The helen array returned by imread has elements that are of type uint8, which means
unsigned 8-bit integers. The possible values for such numbers are the integers from 0 to 255.
The upper left pixel of the image can be accessed as follows:

>> pixel = helen(1,1,:)

pixel(:,:,1) =

205

pixel(:,:,2) =

205



426 APPENDIX C. LABORATORY EXERCISES

pixel(:,:,3) =

205

In this command, the final argument is ‘:’ which means to Matlab, return all elements in the
third dimension. The information about the result is:

>> whos pixel
Name Size Bytes Class

pixel 1x1x3 3 uint8 array

Grand total is 3 elements using 3 bytes

Matlab provides the squeeze command to remove dimensions of length one:

>> rgb = squeeze(pixel)

rgb =

205
205
205

Find the RGB values of the lower right pixel. By looking at the image, and correlating what
you see with these RGB values, infer how white and black are represented in truecolor images.

Matlab can only do very limited operations arrays of this type.

C.2.3 Independent section

1. Construct a mathematical model for the Matlab image function as used in parts3 and 4 of
the in-lab section by giving its domain and its range. Notice that the colormap, although it
is not passed to image as an argument, is in fact an argument. It is passed in the form of
a global variable, the current colormap. Your mathematical model should show this as an
explicit argument.

2. In Matlab, you can create a movie using the following template:

numFrames = 15;
m = moviein(numFrames);
for frame = 1:numFrames;

... create an image X ...
image(X), axis image



C.2. IMAGES 427

m(:,frame) = getframe;
end
movie(m)

The line with the getframe command grabs the current image and makes it a frame of the
movie. Use this template to create a vertical sinusoidal image where the sine waves appear
to be moving upwards, like waves in water viewed from above. Try help movie to learn
about various ways to display this movie.

3. We can examine individually the contributions of red, green, and blue to the image by creating
color separations. Matlab makes this very easy on truecolor images by providing its versatile
array indexing mechanism. To extract the red portion of the helen image created above, we
can simply do:

red = helen(:,:,1);

The result is a 300� 200 array of unsigned 8-bit integers, as we can see from the following:

>> whos red
Name Size Bytes Class

red 300x200 60000 uint8 array

Grand total is 60000 elements using 60000 bytes

(Note that, strangely, the squeeze command is not needed whenever the last dimension(s)
collapse to size 1.) If we display this array, its value will be interepreted as indexes into the
current color map:

image(red), axis image

If the current colormap is the default one, then the image will look very off indeed (and very
colorful). Change the colormap to grayscale to get a more meaningful image:

map = gray(256);
colormap(map);

The resulting image gives the red portion of the image, albeit rendered in black and white.
Construct a colormap to render it in red. Show the Matlab code that does this in your re-
port (you need not show the image). Then give similar color separations for the green and
blue portions. Again, showing the Matlab code is sufficient. Hint: Create a matrix to mul-
tiply pointwise by the map matrix above (using the .* operator) to zero out two of its three
columns. The zeros and ones functions might be useful.

4. A moving average can be applied to an image, with the effect of blurring it. For simplic-
ity, operate on a black and white image constructed from the above red color separation as
follows:



428 APPENDIX C. LABORATORY EXERCISES

>> bwImage = double(red);
>> image(bwImage), axis image
>> colormap(gray(256))

The first line converts the image to an array of doubles instead of unsigned 8-bit integers
because Matlab cannot operate numerically on unsigned 8-bit integers. The remaining two
lines simply display the image using a grayscale colormap.

Construct a new image where each pixel is the average of 25 pixels in the original image,
where the 25 pixels lie in a 5 � 5 square. The new image will need to be slightly smaller
than the original (figure out why). The result should be a blurred image because the moving
average reduces the high frequency content of a signal, and sharp edges are high frequency
phenomena.

5. A simple way to perform edge detection on a black-and-white image is to calculate the dif-
ference between a pixel and the pixel immediately above it and to the left of it. If either
difference exceeds some threshold, we decide there is an edge at that position in the image.
Perform this calculation on the image bwImage given in the previous part. To display with
the edges, start with a white image the same size or slightly smaller than the original image.
When you detect an edge at a pixel, replace the white pixel with a black one. The resulting
image should resemble a line drawing of Helen. Experiment with various threshold values.
Hint: To perform the threshold test, you will probably need the Matlab if command. Try
help if and help relop.

Note: Edge detection is often the first step in image understanding, which is the automatic
interpretation of images. A common application of image understanding is optical char-
acter recognition or OCR, which is the transcription of printed documents into computer
documents.

The difference between pixels tends to emphasize high frequency content in the image and
deemphasize low frequency content. This is why it is useful in detecting edges, which are
high frequency content. This is obvious if we note that frequency in images refers to the rate
of change of intensity over space. That rate is very fast at edges.



C.2. IMAGES 429

Instructor Verification Sheet for C.2

Name: Date:

1. Representation in a colormap of white and black.

Instructor verification:

2. Vertical sinusoidal image.

Instructor verification:

3. Horizontal higher frequency image. Give the frequency.

Instructor verification:

4. Horizontal and vertical sinusoidal image.

Instructor verification:

5. Compression ratio.

Instructor verification:

6. Representation in truecolor of white and black.

Instructor verification:


	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork 

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises


	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations


	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels


	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates


	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section


	Index

