Bode Plots by hand and by MatLab

1. Bode Plots by Hand

Bode Diagrams

Bode magnitude plots

For Bode magnitude plots, the y-axis is typically expressed in terms of dB. Also, the x-axis is frequency on a logarithmic scale.

1. $20 \cdot \log_{10}(A)$, where A is a real number

2. $20 \cdot \log_{10}(|j \cdot \omega \cdot \tau_1|)$, where τ_1 is a real number

3. $20 \cdot \log_{10} ((1 \pm j \cdot \omega \cdot \tau_2))$, where τ_2 is a real number

Page 1

Bode Phase Plots

1. ∠ A, where A is a positive real number

2. \angle B, where B is a negative real number

3. \angle $(j \cdot \omega \cdot \tau_3)$, where τ_3 is a real number

4. \angle $(1+j\cdot\omega\cdot\tau_{_{4}})$, where $\tau_{_{4}}$ is a real number

5. \angle $(1-j\cdot\omega\cdot\tau_{5})$, where τ_{5} is a real number

2. Bode Plots by MatLab

Here is an example of doing Bode Plots with Matlab.

Figure 1. Assume you have a small signal circuit like this.

2.1. Find Vout/Vin

Assume you have the following parameters and try to draw the bode plots. First, you need to find out Vout/Vin.

$$V_{GSQ} = 3V, V_{th} = 1V, \mu_{n}C_{ox} = 100 \frac{\mu A}{V^{2}}, \frac{W}{L} = 20, \lambda = 0,$$

$$Rs = 10k\Omega, Rg = 8x10^{5}\Omega, Rout = 1.82k\Omega, Cgs = 5fF$$

$$\frac{Vgs}{Vin} = \frac{Rg // \frac{1}{jwCgs}}{Rs + Rg // \frac{1}{jwCgs}} = \frac{Rg // \frac{1}{jwCgs}}{Rs + Rg // \frac{1}{jwCgs}} = \frac{8x10^{5}}{8.1x10^{5} + jw(4x10^{-5})}$$

$$gm = \mu_{n}C_{ox}(\frac{W}{L})(V_{GSQ} - V_{th}) = 4m\Omega^{-1}$$

$$rd = \frac{1}{\lambda I_{DS}} = \infty$$

$$\frac{Vout}{Vin} = -gm \cdot Vgs(rd // Rout) = -4m \cdot (\frac{8x10^{5}}{8.1x10^{5} + jw(4x10^{-5})})(\infty // 1.82k)$$

$$\frac{Vout}{Vin} = \frac{5.82x10^{6}}{8.1x10^{5} + iw(4x10^{-5})}$$

2.2. Plot the Bode Plot with MatLab

Assume that you wanted to use Matlab in order to obtain Bode magnitude and phase plots for the following transfer function. The s is jw (j omega).

$$H(s) = P(s)/Z(s)$$
, where
$$P(s) = [2.5329e \cdot 14*s^2 + 1.5915e \cdot 4*s + 1]$$

$$Z(s) = [2.5329e \cdot 20*s^2 + 1.5915e \cdot 7*s + 1]$$

You would need to type the following:

>> num = 5.82e6;	%%the numerator
$den = [4e-5 \ 8.1e5];$	%%the denominator
sys = tf(num, den)	%%the transfer function
bode(sys,{1,1e15})	%%plot the magnitude and phase of the transfer function
	%% The frequency range is 1 rad/s to 1e15 rad/s
Transfer function: 5.82e006	%Output
4e-005 s + 810000	

3. Bode Plot by Hand Example

3.1 The Transfer Function

Say we want to plot the following transfer function by hand.

$$\frac{Vout}{Vin} = \frac{5.82x10^6}{8.1x10^5 + jw(4x10^{-5})}$$

First, we rearrange the numbers

$$\frac{Vout}{Vin} = \frac{7.185}{1 + \frac{jw}{4.938 \times 10^{11}}}$$

Notice when omega w equals to 4.938×10^{11} , it becomes a corner in the bode plot. Also,

if w is close to zero, $\frac{Vout}{Vin}$ is just 7.185.

3.1 Magnitude Plot

Just adding all the plots. $20 \log(7.185) = 17.126$.

 $20 \cdot \log_{10}(|A|)$, where A is a real number

 $20 \cdot \log_{10} \left((1 \pm j \cdot \omega \cdot \tau_2) \right)$, where τ_2 is a real number

Page 6

3.2 Phase Plot

Just adding all the plots.

$$\frac{Vout}{Vin} = \frac{7.185}{1 + \frac{jw}{4.938x10^{11}}}$$

A, where A is a positive real number

For 7.185

 $\omega = \frac{1}{10 \cdot \tau_{5}} \quad \omega = \frac{10}{\tau_{5}} \text{ Careful, you flip the graph upside-down if the (1+jwT) is in the denominator}$ $-45^{\circ} \quad -90^{\circ}$

4. Reference

Original EE 105 Discussion Notes from Meghdad Hajimorad ("Amin")

Last Modified by: Bill Hung

Date: 5 August 2006