
Lab01 Introduction to LabVIEW and Data Acquisition

Bill Hung

17508938

EE145M

Lab Time: 9-12pm Wednesday

Lab Partner: Chih-Chieh Wang (Dennis)

Aim

 Convert a 16-bit signed integer to 8-bit, 16-bit, or 32-bit numbers, either signed or

unsigned. The numbers are represented in decimal, binary, and hex. (Numbers.vi)

 Built an interface with a LED through a LabVIEW program and a Data Acquisition

Board (DAQ) MIO-16E. Turning the LED on in the external circuit will also turn the

LabVEIW indicator on.

1. Setup

 The software and equipment used in this lab.

The interface between the MIO-16E board and the circuit is shown above. The MIO-16E

board is a data acquisition board connected to the computer. The input pin is pin 3 and

the output pin is pin 7. When input pin 3 is connected to ground, the output pin 7 will be

high, and current flows through the LED and light is emitted.

This is not the best setup for the experiment because pin 3 is left floating when the switch

is open. A better way for the setup is to have a pull-up resistor to pull the potential of pin

3 to VDD when the switch is open.

2. Data summary

 First, a LabVIEW program Numbers.vi is built (see the diagram at the end of the report),

and a set of input numbers are converted to different representations.

2.1 Tabulate the response of the LabVIEW numbers. Explain your results.

sig
ned
8b

signed
16b

signed
32b

unsigned
8b

unsigned
16b

unsigned
32b

hex
8b

hex
16b hex 32b

0 0 0 0 0 0 0 00 0000 00000000

1 1 1 1 1 1 1 01 0001 00000001

2 2 2 2 2 2 2 02 0002 00000002

3 3 3 3 3 3 3 03 0003 00000003

4 4 4 4 4 4 4 04 0004 00000004

5 5 5 5 5 5 5 05 0005 00000005

125 125 125 125 125 125 125 7D 007D 0000007D

126 126 126 126 126 126 126 7E 007E 0000007E

127 127 127 127 127 127 127 7F 007F 0000007F

128 128 128 128 128 128 128 80 0080 00000080

129 129 129 129 129 129 129 81 0081 00000081

130 130 130 130 130 130 130 82 0082 00000082

-130 126 -130 -130 126 65406 4294967166 7E FF7E FFFFFF7E

-129 127 -129 -129 127 65407 4294967167 7F FF7F FFFFFF7F

-128
-

128 -128 -128 128 65408 4294967168 80 FF80 FFFFFF80

-127
-

127 -127 -127 129 65409 4294967169 81 FF81 FFFFFF81

-126
-

126 -126 -126 130 65410 4294967170 82 FF82 FFFFFF82

-125
-

125 -125 -125 131 65411 4294967171 83 FF83 FFFFFF83

For a signed 8-bit integer, the largest representable number is 127(0111 1111), and the

smallest is -128 (1000 0000). Therefore, for -129 (if 9 bits, would be 1 0111 1111), the

number representation as an 8-bit number is shown as positive 127 (0111 1111) because

only the lowest 8 bits were obtained. More detail explanation is in section 3.1.

2.2 Tabulate the logic high and logic low level for the MIO-16E interface when

running the InputOutput VI. What logic techno is used (CMOS? TTL?) and why?

 MIO-16E

74F00 Logic High

 74F00 NAND Gates (National Semiconductor)

 Logic Low (V) Logic High (V)

MIO-16E 0.180 5.073

74F00 0.18 4.40

TTL (from textbook p. 9) 0.2 3.2

The technology used in the MIO-16E interface board is CMOS technology. According to

the textbook by Stephen Derenzo on page 9, if the technology is TTL, the logic high

should be around 3.2V. However, the logic high for the MIO-16E board is around 5V,

which suggested the technology is CMOS.

Our group did a control experiment using 74F00 NAND gate chip (a CMOS technology)

to generate a logic high, and the output of that is 4.4V. The result is similar to that of

MIO-16E, because they are both CMOS technology.

3. Discussion
3.1 Discuss the reasons why 0 and small positive integers have the same representation,

whereas a negative number such as -129 has six different representations. Use examples

to support your discussion.

For a signed 8-bit integer, the largest representable number is 127 (0111 1111), and the

smallest is -128 (1000 0000). Therefore, for -129 (if 9 bits, would be 1 0111 1111), the

number representation as an 8-bit number is shown as positive 127 (0111 1111) because

only the lowest 8 bits were obtained from a 16-bit signed integer. For a signed negative

16-bit integer (like -129), when converted to a signed 16-bit integer or 32-bit integer the

number appears to be the right number (-129) because no bit needed to be cut.

When converting to an unsigned 8-bit integer, the sign bit is truncated like a signed

integer -129. Therefore the number appeared as 127(0111 1111). When 16-bit signed

integer is converted to an unsigned 16-bit integer or an unsigned 32-bit integer, the left-

most bit is sign extended. For example, if the number is negative (like -129) the extra bit

will be filled with 1 (like 111111… 0111 1111). So the 16-bit number -129 appeared to

be an unsigned numbers 65407 and 4294967167.

When the signed 16-bit number is converted into a 8-bit Hex, the negative number -129

is truncated to be 127(0111 1111) and appeared as 7F. Similar to unsigned numbers, sign

extension happens to 16-bit and 32-bit hex numbers as well. Therefore, -129 appeared as

FF7F and FFFFFF7F in hex.

3.2 What is the main difference between the MIO-16E and the PCI-7831R FPGA

board? We will need a high degree of timing accuracy of the FPGA for the DSP labs

later on. Why is the FPGA preferred over the DAQ board in timing sensitive application?

The MIO-16E board is simply a Data Acquisition (DAQ) board, without any timing unit

built-in. In other words, when the MIO-16E board receives an instruction to fetch data,

the data will be read. The computer is responsible for the timing control.

The PCI-7831R FPGA board handles the timing within the board. Since the timing is

performed by a more low-level unit on the PCI-78331R FPGA board, the timing will be

more accurate.

The FPGA is preferred over the DAQ board because during high frequency sampling,

accurate timing is necessary. The DAQ board timing would be less accurate because high

level computer applications control the timing. High level application can be interrupted

by other applications, and the clock is less accurate because of longer wire length from

the computer to the board to deliver the clock signal.

4. Questions

4.1 Given an 8-bit binary number where all bits are one, what is the numerical value

when it is interpreted as:

 (a) 2’s complement integer

 (b) an unsigned integer

 (c) hexadecimal

(a) -1

(b) 255

(c) FF

Given an 16-bit binary number where all bits are one, what is the numerical value when

it is interpreted as:

 (a) 2’s complement integer

 (b) an unsigned integer

 (c) hexadecimal

(a) -1

(b) 65535

(c) FFFF

4.2 In 2’s complement arithmetic, the sign of a number is changed (a -> -a) or (-a -> a)

by taking the complement of each bit and adding1. Using the 8-bit binary and 2’s

complement representations given in Table 1.1, show explicitly that:

 (a) The number 0 and the 2’s complement of 0 have the same bit pattern (this is

expected, since 0=-0).

 (b) The number -127 and the 2’s complement of 127 have the same bit pattern (this is

expected, since -127=-127) .

 (c) The number -128 and the 2’s complement of -128 have the same bit pattern (this is

not expected, since -128≠ -(-128)).

(a) 0000 0000, flip 0->1

 1111 1111, +1

 0000 0000, which is the same as the original bit pattern

(b) start with 127,

 0111 1111, flip bits

 1000 0000, add 1

 1000 0001, which is the same as the bit pattern of -127

(c) start with -128

 1000 0000, flip bits

 0111 1111, add 1

 1000 0000, which is the same as the bit pattern of -128

 This result is not expected, because the two’s complement of -128 does not equal to -

128.

4.3 Using the 8-bit binary and 2’s complement representations given in Table 1.1, show

explicitly that for the numbers 1, -1, 16, and 127, taking the 2’s complement twice results

in the original number: a = (-(-a)).

Number 1

1
st
 Pass 0000 0001 2

nd
 Pass 1111 1111

 1111 1110 0000 0000

 1111 1111 0000 0001

Number -1

1
st
 Pass 1111 1111 2

nd
 Pass 0000 0001

 0000 0000 1111 1110

 0000 0001 1111 1111

Number 16

1
st
 Pass 0001 0000 2

nd
 Pass 1111 0000

 1110 1111 0000 1111

 1111 0000 0001 0000

Number 127

1
st
 Pass 0111 1111 2

nd
 Pass 1000 0001

 1000 0000 0111 1110

 1000 0001 0111 1111

4.4 Explain the function of the Sequence Frame, the While Loop and the For Loop.

 LabVIEW is a dataflow language. Multiple instructions can be executed in parallel,

so in order to execute commands in sequence, a sequence frame is needed. The sequence

frame executes operations a frame at a time. The operation within a frame is executed

whenever the input data is available, and after all operations within a sequence frame are

completed, the next sequence frame will be executed. This sequence frame structure

guarantees operations will execute step-by-step.

 When the while-loop is set to “Stop If True”, like the diagram above, the while-loop

executes the operations within the loop until the condition statement is no longer true. In

other words, if the condition statement connected to the red dot is false, the while loop

will continues to execute the operations within the while loop again and again. The while

loop will stop when the condition statement is true. When the while loop is set as

“Continue If True”, then the operations in the while-loop will be executed if the

condition is true.

 The for-loop executes the operation within the for-loop for a fix number of times.

The number of iteration is determined by the number connected to the ‘N’ at the corner.

The constant for the iteration number ‘N’ should be placed outside the for-loop. For

example, if the for-loop was instructed to be executed 10 times, the operations within the

for-loop will be executed 10 times. The ‘i’ indicates the current number of iteration, such

as round 1, round 2, round 3…

4.5 Explain the purpose of the inner while loop in Figure 2 (The one inside the sequence

frame). Why must the pushbutton control be configured to “Latch when pressed”?

 The inner while-loop checks if the button is being press or not continuously. When the

button is press, only one pulse is desired. Since the human response time is much slower

than the computer operating speed. If the button is not configured to be “Latch when

pressed” the number may increment very quickly, and very soon the number will

increment from the smallest number to the largest number when the button is only

pressed once.

 The “Latch when pressed” button makes sure the number is only incremented by one

each time the button is pressed.

5. Laboratory Data Sheets
 i. InputOutput.vi

The Front Panel of InputOutput.vi

The Block Diagram of InputOutput.vi

Number.vi Front Panel

Number.vi Block Diagram

