474 APPENDIX C. LABORATORY EXERCISES
C.10 Modulation and demodulation

The purpose of thislab isto learn to use frequency domain concepts in practical applications. The
application selected here is amplitude modulation (AM), a widely used technique in communi-
cation systems, including of course AM radio, but also ailmost all digital communication systems,
including digital cellular telephones, voiceband data modems, and wireless networking devices. A
secondary purpose of thislab isto gain aworking knowledge of the fast Fourier transform (FFT)
algorithm, and an introductory working knowledge of filter design. Note that this lab requires the
Signal Processing Toolbox of Matlab for filter design.

C.10.1 Background
Amplitude M odulation

The problem addressed by AM modulation is that we wish to convey a signal from one point in
physical space to another through some channel. The channel has certain constraints, and in partic-
ular, can typicaly only pass frequencies within a certain range. An AM radio station, for example,
might be constrained by government regulators to broadcast only radio signals in the range of 720
kHz to 760 kHz, abandwidth of 40 kHz.

The problem, of course, is that the radio station has no interest in broadcasting signals that only
contain frequencies in the range 720 kHz to 760 kHz. They are more likely to want to transmit a
voice signal, for example, which contains frequencies in the range of about 50 Hz to about 10 kHz.
AM modulation deals with this mismatch by modulating the voice signal so that it is shifted to the
appropriate frequency range. A radio receiver, of course, must demodulate the signal, since 720
kHz is well above the hearing range of humans.

In this lab, we present a somewhat artificial scenario in order to maximize the experience. We will
keep all frequencies that we work with within the audio range so that you can listen to any signal.
Therefore, we will not modulate a signal up to 720 kHz (you would not be able to hear the result).
Instead, we present the following scenario:

Assume we have asignal that contains frequencies in the range of about 100 to 300 Hz,
and we have a channel that can pass frequencies from 700 to 1300 Hz® Our task will
be to modulate the first signal so that it lies entirely within the channel passband, and
then to demodulate to recover the original signal.

AM modulation is studied in detail in exercise16 of chapter 10. In that problem, you showed that if
y(t) = z(t) cos(wet),

thenthe CTFT is
Yw)=X(w—-—we)/2+ X(w+we)/2.

®Since Fourier transforms of real signals are symmetric, the signal also contains frequenciesin the range -100 to -300
Hz, and the channel passes frequencies in the range -700 to -1300 Hz.
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In this lab, we will get a similar result experimentaly, but working entirely with discrete-time
signals, and staying entirely within the audio range so that we can hear (and not just plot) the
results.

TheFFT Algorithm

In order to understand AM modulation, we need to be able to calculate and examine Fourier trans-
forms. We will do this numerically in this lab, unlike exercise16 of chapter 10, where it is done
analyticaly.

In lab C.7, we used a supplied function called f our i er Ser i es to calculate the Fourier series
coefficients A, and ¢, for signals. Inthislab, wewill usethe built-in functionf f t , whichisused, in
fact, by thef our i er Ser i es function. Learning to usethe FFT isextremely valuable; it iswidely
used all analytical fields that involve time series analysis, including not just all of engineering, but
also the natural sciences and social sciences. The FFT is also widely abused by practitioners who
do not really understand what it does.

The FFT agorithm operates most efficiently on finite signals whose lengths are a power of 2. Thus,
in this lab, we will work with what might seem like a peculiar signal length, 8192. Thisis 23. At
an 8 kHz sample rate, it corresponds to slightly more than one second of sound.

Recall that a periodic discrete-time signal with period p has a discrete-time Fourier series expansion

(p=1)/2
z(n) = Ao + Z Ay, cos(kwon + ¢r) (C.14)
k=1
for p odd and
/2
z(n) = Ao + Z Ay, cos(kwon + ¢r) (C.15)
k=1

for p even, where wy = 27/p, the fundamental frequency in cycles per sample. Recall further that
we can aternatively write the Fourier series expansion in terms of complex exponentials,

P
z(n) = Z Xethwon, (C.16)
k=0

Note that this sum covers one cycle of the periodic signal. If what we haveis afinite signal instead
of a periodic signal, then we can interpret the finite signal as being one cycle of aperiodic signal.

In chapter 10, we describe four Fourier transforms. The only one of these that is computable on a
computer is the DFT, or discrete Fourier transform. For a periodic discrete-time signal x with
period p, we have the inver se DFT, which takes us from the frequency domain to the time domain,

17,
Vn € Integers, x(n)=-— Z X ethwon, (C17)
P =0
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and the DFT, which takes us from the time domain to the frequency domain,
p—1 )
VK€ Integers, Xj = > z(m)e” "m0, (C.18)
m=0
Comparing (C.17) and (C.16), we see that the DFT yields coefficients that are just scaled versions
of the Fourier series coefficients. This scaling is conventional.

In lab C.7 we calculated A, and ¢;.. In this lab, we will calculate Xj. This can be done using
(C.18). The FFT agorithm is simply a computationally efficient algorithm for calculating C.18).

In Matlab, you will collect 8192 samples of asignal into a vector and then invoke thef f t function.
Invoke hel p fft to verify that thisfunction is the right one to use. If your 8192 samples arein a
vector x, thenf f t ( x) will return avector with 8192 complex number, representing X, ..., Xg191.

From (C.18) it is easy to verify that X, = X, for all integers £ (see part 1 of the in-lab section
below). Thus, the DFT X is a periodic, discrete function with period p. If you have the vector
fft(x),representing X, ..., Xs191, you know al Xj. For example,

X_1 = X_148192 = Xg191

From C.17, you can see that each X, scales acomplex exponential component at frequency kuwy =
k2w /p, which has units of samples per second. In order to interpret the DFT coefficients X;,, you
will probably want to convert the frequency units to Hertz. If the sampling frequency is f samples
per second, then you can do the conversion as follows (see box on page203):

(k2 /p)[radians/sample] f;[samples/second]
2w [radiang/cycle]

= kf,/plcycles/second] (C.19

Thus, each X, gives the DFT value at frequency & f; /p Hz. For our choices of numbers, fs = 8000
and p = 8192, so X, givesthe DFT value at frequency k£ x 0.9766 Hz.

Filtering in Matlab

Thefilter function can compute the output of an LTI system given by a difference equation of
the form

ary(n) = bix(n)+bex(n—1)+---+byz(n—N+1)—asy(n—1)—...—apy(n—M+1). (C.20)
To find the output y, first collect the (finite) signal = into a vector. Then collect the coefficients
ai,---,ay intoavector A of length IV, and the coefficients b, - - - , by, into avector B of length M.
Then just do

y =filter(B, A Xx);

Example 3.1: Consider the difference equation

y(n) = z(n) — 0.95y(n — 1).
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Figure C.12: Impulse response of a simple filter.

We can find and plot the first 100 samples of the impulse response by letting the vector
z beanimpulseandusing fi | t er to calculate the output:

x =11, zeros(1,99)];
y = filter([1], [1, 0.95], Xx);
stemy);

which yields the plot shown in C.12. The natural question that arises next is how to
decide on the values of B and A. Thisis addressed next.

Filter Design in Matlab

The signal processing toolbox of Matlab provides a set of useful functions that return filter coeffi-
cients A and B given a specification of adesired frequency response. For example, suppose we have
asignal sampled at 8 kHz and we wish to design afilter that passes all frequency components below
1 kHz and removes all frequency components above that. The following Matlab command designs
afilter that approximates this specification:

[B, A] = butter(10, 0.25);
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Figure C.13: Frequency response of a 10-th order Butterworth lowpass fil-
ter.

The first argument, called the filter order, gives M and N in (C.20) (a constraint of the but t er

functionisthat M = N). The second argument gives the cutoff frequency of thefilter asafraction
of half the sampling frequency. Thus, in the above, the cutoff frequency is0.25 % (8000/2) = 1000
Hertz. The cutoff frequency is by definition the point at which the magnitude response is 1A/2.
Thereturned arrays B and A are the argumentsto supply tof i | t er to calculate the filter output.

The frequency response of thisfilter can be plotted using the f r eqz function as follows:

[HW = freqz(B, A 512);

p! ot (W (4000/pi), abs(H));

xl abel (" frequency’);

yl abel (’ magni t ude response’);

which yields the plot shown in figure C.13. (The argument 512 specifies how many samples of the
continuous frequency response we wish to calculate.)

Thisfrequency response bears further study. Notice that the response transitions gradually from the
passband to the stopband. An abrupt transition is not implementable. The width of the transition
band can be reduced by using an order higher than 10 in the but t er function, or by designing
more sophisticated filtersusing thecheby1, cheby?2,orel | i p functionsin the signal processing
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Figure C.14: Impulse response of a 10-th order Butterworth lowpass filter.

toolbox. The Butterworth filter returned by but t er , however, will be adequate for our purposesin
thislab.

Using ahigher order to get anarrower transition band can be an expensive proposition. The function
filter works by implementing the difference equation (C.20). As M and N get larger, each
output sample y(n) requires more computation.

The first 50 samples of the impulse response of the filter can be plotted using the following Matlab
code:

X [1, zeros(1,49)];
y = filter(B, A X);
stem(y);

Thisyields the plot shown in figure C.14.

C.10.2 In-lab section

1. Use(C.18) to show that X; = X; , , for al integers k. Also, show that the DFT is conjugate
symmetric, i.e. X; = (X’ ,)* for al integers k, assuming z(n) isreal for al integers n.
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2. In part 2 of the in-lab portion of lab C.7, we studied a chirp signal. We will use a similar
signal here, athough it will vary over a narrower range of frequencies. Construct the signal x
given by:

t
X

[ 0: 1/ 8000: 8191/ 8000] ;
Si n(2*pi *100*t + 2*pi *100*(t.*t));

Thisisachirp that varies from about 100 Hz to about 300 Hz. Listen to it. Calculate its DFT
using thef f t function, and plot the magnitude of the DFT. Construct your plot in such away
that your horizontal axis islabeled in Hertz, not in the index & of X;. The horizontal axis
should vary in frequency from 0 to 8000 Hz.

3. Your plot from part 2 should show frequency components in the range 100 Hz to 300 Hz, but
in addition, it shows frequency components in the range 7700 to 7900. These extra compo-
nents are the potentially the most confusing aspect of the DFT, but in fact, they are completely
predictable from the mathematical properties of the DFT.

Recall that the DFT of areal signal is conjugate symmetric. Thus,
| Xkl = X"

Thus, if there are frequency components in the range 100 to 300 Hz, then there should also
be frequency components with the same magnitude in the range -100 to -300 Hz. These do
not show up on your plot simply because you have not plotted the frequency components at
negative frequencies.

Recall that the DFT is periodic with period p. That is, X;, = X}, for all integers k. Recall
from (C.19) that the & — th DFT coefficient represents a frequency component at & f; /p
Hertz, where f, is the sampling frequency, 8000 Hertz. Thus, a frequency component at
some frequency f must be identical to a frequency component at f + f;. Therefore, the
components in the range -100 to -300 Hertz must be identical to the components in the range
7700 to 7900 Hertz! The image we are seeing in that latter range is a consequence of the
conjugate symmetry and periodicity of the DFT!

Since the DFT is periodic with period 8000 Hertz (when using units of Hertz), it possibly
makes more sense to plot its values in the range -4000 to 4000 Hertz, rather than O to 8000
Hertz. This way, we can see the symmetry. Since the DFT gives the weights of complex
exponential components, the symmetry isintuitive, because it takes two complex exponentials
with frequencies that are negatives of one another to yield areal-valued sinusoid.

Manipulate the result of the f f t function to yield a plot of the DFT of the chirp where the
horizontal axisis-4000 to 4000 Hertz. It is not essential to include both endpoints, at -4000
and at 4000 Hertz, since they are constrained to be identical anyway by periodicity.

C.10.3 Independent section

1. For the chirp signal as above, multiply it by a sine wave with frequency 1 kHz, and plot the
magnitude of the DFT of the result over the frequency range -4000 to 4000 Hz. Verify that
the resulting signal will get through the channel described in the scenario on page474. Listen
to the modulated chirp. Does what you hear correspond with what you see in the DFT plot?
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2. The modulated chirp signal constructed in the previous part can be demodulated by multiply-
ing it again by a sine wave with frequency 1 kHz. Form that product, and plot the magnitude
of the DFT of the result over the frequency range -4000 to 4000 Hz. How does the result
differ from the original chip? Listen to the resulting signal. Would this be an acceptable
demodulation by itself?

3. Usethebut t er function to design afilter that will process the result of the previous part so
that it more closely resembles the original signal. You should be able to get very close with a
modest filter order (say, 5). Filter the result of the previous part, listen to the result, and plot
the magnitude of its DFT in the frequency range -4000 to 4000 Hz.

The modulation and demodulation method you have just implemented is similar to what is
used many communication systems. A number of practical problems have to be overcomein
practice, however. For example, the receiver usually does not know the exact frequency and
phase of the carrier signal, and hence it has to somehow infer this frequency and phase from
the signal itself. One technique is to simply include the carrier in the modulated signal by
adding it in. Instead of transmitting

y(t) = x(t) cos(wet),

we can transmit
y(t) = (1 4 z(t)) cos(wet),

in which case, the transmitted signal will contain the carrier itself. This can be used for
demodulation. Another technique is to construct a phase locked loop, a clever device that
extracts the carrier from the transmitted signal without it being explicitly present. Thismethod
isused in digital transmission schemes. The details, however, must be | eft to a more advanced
text.

In the scheme we have just implemented, the amplitude of a carrier wave is modulated to
carry asignal. It turns out that we can also vary the phase of the carrier to carry additional
information. Such AM-PM methods are used extensively in digital transmission. These
methods make more efficient use of precious radio bandwidth than AM alone.
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I nstructor Verification Sheet for C.10

Name: Date:

1. Verify periodicity and conjugate symmetry of the DFT.

Instructor verification:

2. Plot of the magnitude of the DFT, correctly labeled, from 0 to 8000 Hz.

Instructor verification:

3. Plot of the magnitude of the DFT, correctly labeled, from -4000 to 4000 Hz.

Instructor verification:




	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork 

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises


	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations


	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels


	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates


	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section


	Index

