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C.10 Modulation and demodulation

The purpose of this lab is to learn to use frequency domain concepts in practical applications. The
application selected here is amplitude modulation (AM), a widely used technique in communi-
cation systems, including of course AM radio, but also almost all digital communication systems,
including digital cellular telephones, voiceband data modems, and wireless networking devices. A
secondary purpose of this lab is to gain a working knowledge of the fast Fourier transform (FFT)
algorithm, and an introductory working knowledge of filter design. Note that this lab requires the
Signal Processing Toolbox of Matlab for filter design.

C.10.1 Background

Amplitude Modulation

The problem addressed by AM modulation is that we wish to convey a signal from one point in
physical space to another through some channel. The channel has certain constraints, and in partic-
ular, can typically only pass frequencies within a certain range. An AM radio station, for example,
might be constrained by government regulators to broadcast only radio signals in the range of 720
kHz to 760 kHz, a bandwidth of 40 kHz.

The problem, of course, is that the radio station has no interest in broadcasting signals that only
contain frequencies in the range 720 kHz to 760 kHz. They are more likely to want to transmit a
voice signal, for example, which contains frequencies in the range of about 50 Hz to about 10 kHz.
AM modulation deals with this mismatch by modulating the voice signal so that it is shifted to the
appropriate frequency range. A radio receiver, of course, must demodulate the signal, since 720
kHz is well above the hearing range of humans.

In this lab, we present a somewhat artificial scenario in order to maximize the experience. We will
keep all frequencies that we work with within the audio range so that you can listen to any signal.
Therefore, we will not modulate a signal up to 720 kHz (you would not be able to hear the result).
Instead, we present the following scenario:

Assume we have a signal that contains frequencies in the range of about 100 to 300 Hz,
and we have a channel that can pass frequencies from 700 to 1300 Hz.5 Our task will
be to modulate the first signal so that it lies entirely within the channel passband, and
then to demodulate to recover the original signal.

AM modulation is studied in detail in exercise16 of chapter 10. In that problem, you showed that if

y(t) = x(t) cos(!ct);

then the CTFT is
Y (!) = X(! � !c)=2 +X(! + !c)=2:

5Since Fourier transforms of real signals are symmetric, the signal also contains frequencies in the range -100 to -300
Hz, and the channel passes frequencies in the range -700 to -1300 Hz.
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In this lab, we will get a similar result experimentally, but working entirely with discrete-time
signals, and staying entirely within the audio range so that we can hear (and not just plot) the
results.

The FFT Algorithm

In order to understand AM modulation, we need to be able to calculate and examine Fourier trans-
forms. We will do this numerically in this lab, unlike exercise 16 of chapter 10, where it is done
analytically.

In lab C.7, we used a supplied function called fourierSeries to calculate the Fourier series
coefficients Ak and �k for signals. In this lab, we will use the built-in function fft, which is used, in
fact, by the fourierSeries function. Learning to use the FFT is extremely valuable; it is widely
used all analytical fields that involve time series analysis, including not just all of engineering, but
also the natural sciences and social sciences. The FFT is also widely abused by practitioners who
do not really understand what it does.

The FFT algorithm operates most efficiently on finite signals whose lengths are a power of 2. Thus,
in this lab, we will work with what might seem like a peculiar signal length, 8192. This is 213. At
an 8 kHz sample rate, it corresponds to slightly more than one second of sound.

Recall that a periodic discrete-time signal with period p has a discrete-time Fourier series expansion

x(n) = A0 +

(p�1)=2X
k=1

Ak cos(k!0n+ �k) (C.14)

for p odd and

x(n) = A0 +

p=2X
k=1

Ak cos(k!0n+ �k) (C.15)

for p even, where !0 = 2�=p, the fundamental frequency in cycles per sample. Recall further that
we can alternatively write the Fourier series expansion in terms of complex exponentials,

x(n) =
pX

k=0

Xke
ik!0n: (C.16)

Note that this sum covers one cycle of the periodic signal. If what we have is a finite signal instead
of a periodic signal, then we can interpret the finite signal as being one cycle of a periodic signal.

In chapter 10, we describe four Fourier transforms. The only one of these that is computable on a
computer is the DFT, or discrete Fourier transform. For a periodic discrete-time signal x with
period p, we have the inverse DFT, which takes us from the frequency domain to the time domain,

8 n 2 Integers; x(n) =
1

p

p�1X
k=0

X 0
ke

ik!0n; (C.17)
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and the DFT, which takes us from the time domain to the frequency domain,

8 k 2 Integers; X0
k =

p�1X
m=0

x(m)e�imk!0 : (C.18)

Comparing (C.17) and (C.16), we see that the DFT yields coefficients that are just scaled versions
of the Fourier series coefficients. This scaling is conventional.

In lab C.7 we calculated Ak and �k. In this lab, we will calculate X0
k. This can be done using

(C.18). The FFT algorithm is simply a computationally efficient algorithm for calculating (C.18).

In Matlab, you will collect 8192 samples of a signal into a vector and then invoke the fft function.
Invoke help fft to verify that this function is the right one to use. If your 8192 samples are in a
vector x, then fft(x)will return a vector with 8192 complex number, representing X0; :::; X8191 .

From (C.18) it is easy to verify that Xk = Xk+p for all integers k (see part 1 of the in-lab section
below). Thus, the DFT X is a periodic, discrete function with period p. If you have the vector
fft(x), representing X0; :::;X8191 , you know all Xk. For example,

X�1 = X�1+8192 = X8191

From C.17, you can see that each Xk scales a complex exponential component at frequency k!0 =
k2�=p, which has units of samples per second. In order to interpret the DFT coefficients Xk, you
will probably want to convert the frequency units to Hertz. If the sampling frequency is fs samples
per second, then you can do the conversion as follows (see box on page203):

(k2�=p)[radians/sample]fs[samples/second]
2�[radians/cycle]

= kfs=p[cycles/second] (C.19)

Thus, each Xk gives the DFT value at frequency kfs=p Hz. For our choices of numbers, fs = 8000
and p = 8192, so Xk gives the DFT value at frequency k � 0:9766 Hz.

Filtering in Matlab

The filter function can compute the output of an LTI system given by a difference equation of
the form

a1y(n) = b1x(n)+b2x(n�1)+� � �+bNx(n�N+1)�a2y(n�1)�:::�aMy(n�M+1): (C.20)

To find the output y, first collect the (finite) signal x into a vector. Then collect the coefficients
a1; � � � ; aN into a vector A of length N , and the coefficients b1; � � � ; bM into a vector B of length M .
Then just do

y = filter(B, A, x);

Example 3.1: Consider the difference equation

y(n) = x(n)� 0:95y(n � 1):



C.10. MODULATION AND DEMODULATION 477

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure C.12: Impulse response of a simple filter.

We can find and plot the first 100 samples of the impulse response by letting the vector
x be an impulse and using filter to calculate the output:

x = [1, zeros(1,99)];
y = filter([1], [1, 0.95], x);
stem(y);

which yields the plot shown in C.12. The natural question that arises next is how to
decide on the values of B and A. This is addressed next.

Filter Design in Matlab

The signal processing toolbox of Matlab provides a set of useful functions that return filter coeffi-
cients A and B given a specification of a desired frequency response. For example, suppose we have
a signal sampled at 8 kHz and we wish to design a filter that passes all frequency components below
1 kHz and removes all frequency components above that. The following Matlab command designs
a filter that approximates this specification:

[B, A] = butter(10, 0.25);
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Figure C.13: Frequency response of a 10-th order Butterworth lowpass fil-
ter.

The first argument, called the filter order, gives M and N in (C.20) (a constraint of the butter
function is that M = N ). The second argument gives the cutoff frequency of the filter as a fraction
of half the sampling frequency. Thus, in the above, the cutoff frequency is 0:25 � (8000=2) = 1000
Hertz. The cutoff frequency is by definition the point at which the magnitude response is 1=

p
2.

The returned arrays B and A are the arguments to supply to filter to calculate the filter output.

The frequency response of this filter can be plotted using the freqz function as follows:

[H,W] = freqz(B,A,512);
plot(W*(4000/pi), abs(H));
xlabel(’frequency’);
ylabel(’magnitude response’);

which yields the plot shown in figure C.13. (The argument 512 specifies how many samples of the
continuous frequency response we wish to calculate.)

This frequency response bears further study. Notice that the response transitions gradually from the
passband to the stopband. An abrupt transition is not implementable. The width of the transition
band can be reduced by using an order higher than 10 in the butter function, or by designing
more sophisticated filters using the cheby1, cheby2, or ellip functions in the signal processing
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Figure C.14: Impulse response of a 10-th order Butterworth lowpass filter.

toolbox. The Butterworth filter returned by butter, however, will be adequate for our purposes in
this lab.

Using a higher order to get a narrower transition band can be an expensive proposition. The function
filter works by implementing the difference equation (C.20). As M and N get larger, each
output sample y(n) requires more computation.

The first 50 samples of the impulse response of the filter can be plotted using the following Matlab
code:

x = [1, zeros(1,49)];
y = filter(B, A, x);
stem(y);

This yields the plot shown in figure C.14.

C.10.2 In-lab section

1. Use (C.18) to show that X0
k = X 0

k+p for all integers k. Also, show that the DFT is conjugate
symmetric, i.e. X0

k = (X 0
�k)

� for all integers k, assuming x(n) is real for all integers n.
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2. In part 2 of the in-lab portion of lab C.7, we studied a chirp signal. We will use a similar
signal here, although it will vary over a narrower range of frequencies. Construct the signal x
given by:

t = [0:1/8000:8191/8000];
x = sin(2*pi*100*t + 2*pi*100*(t.*t));

This is a chirp that varies from about 100 Hz to about 300 Hz. Listen to it. Calculate its DFT
using the fft function, and plot the magnitude of the DFT. Construct your plot in such a way
that your horizontal axis is labeled in Hertz, not in the index k of Xk. The horizontal axis
should vary in frequency from 0 to 8000 Hz.

3. Your plot from part 2 should show frequency components in the range 100 Hz to 300 Hz, but
in addition, it shows frequency components in the range 7700 to 7900. These extra compo-
nents are the potentially the most confusing aspect of the DFT, but in fact, they are completely
predictable from the mathematical properties of the DFT.

Recall that the DFT of a real signal is conjugate symmetric. Thus,

jX 0
kj = jX 0

�kj:
Thus, if there are frequency components in the range 100 to 300 Hz, then there should also
be frequency components with the same magnitude in the range -100 to -300 Hz. These do
not show up on your plot simply because you have not plotted the frequency components at
negative frequencies.

Recall that the DFT is periodic with period p. That is, Xk = Xk+p for all integers k. Recall
from (C.19) that the k � th DFT coefficient represents a frequency component at kfs=p
Hertz, where fs is the sampling frequency, 8000 Hertz. Thus, a frequency component at
some frequency f must be identical to a frequency component at f + fs. Therefore, the
components in the range -100 to -300 Hertz must be identical to the components in the range
7700 to 7900 Hertz! The image we are seeing in that latter range is a consequence of the
conjugate symmetry and periodicity of the DFT!

Since the DFT is periodic with period 8000 Hertz (when using units of Hertz), it possibly
makes more sense to plot its values in the range -4000 to 4000 Hertz, rather than 0 to 8000
Hertz. This way, we can see the symmetry. Since the DFT gives the weights of complex
exponential components, the symmetry is intuitive, because it takes two complex exponentials
with frequencies that are negatives of one another to yield a real-valued sinusoid.

Manipulate the result of the fft function to yield a plot of the DFT of the chirp where the
horizontal axis is -4000 to 4000 Hertz. It is not essential to include both endpoints, at -4000
and at 4000 Hertz, since they are constrained to be identical anyway by periodicity.

C.10.3 Independent section

1. For the chirp signal as above, multiply it by a sine wave with frequency 1 kHz, and plot the
magnitude of the DFT of the result over the frequency range -4000 to 4000 Hz. Verify that
the resulting signal will get through the channel described in the scenario on page474. Listen
to the modulated chirp. Does what you hear correspond with what you see in the DFT plot?
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2. The modulated chirp signal constructed in the previous part can be demodulated by multiply-
ing it again by a sine wave with frequency 1 kHz. Form that product, and plot the magnitude
of the DFT of the result over the frequency range -4000 to 4000 Hz. How does the result
differ from the original chip? Listen to the resulting signal. Would this be an acceptable
demodulation by itself?

3. Use the butter function to design a filter that will process the result of the previous part so
that it more closely resembles the original signal. You should be able to get very close with a
modest filter order (say, 5). Filter the result of the previous part, listen to the result, and plot
the magnitude of its DFT in the frequency range -4000 to 4000 Hz.

The modulation and demodulation method you have just implemented is similar to what is
used many communication systems. A number of practical problems have to be overcome in
practice, however. For example, the receiver usually does not know the exact frequency and
phase of the carrier signal, and hence it has to somehow infer this frequency and phase from
the signal itself. One technique is to simply include the carrier in the modulated signal by
adding it in. Instead of transmitting

y(t) = x(t) cos(!ct);

we can transmit
y(t) = (1 + x(t)) cos(!ct);

in which case, the transmitted signal will contain the carrier itself. This can be used for
demodulation. Another technique is to construct a phase locked loop, a clever device that
extracts the carrier from the transmitted signal without it being explicitly present. This method
is used in digital transmission schemes. The details, however, must be left to a more advanced
text.

In the scheme we have just implemented, the amplitude of a carrier wave is modulated to
carry a signal. It turns out that we can also vary the phase of the carrier to carry additional
information. Such AM-PM methods are used extensively in digital transmission. These
methods make more efficient use of precious radio bandwidth than AM alone.
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Instructor Verification Sheet for C.10

Name: Date:

1. Verify periodicity and conjugate symmetry of the DFT.

Instructor verification:

2. Plot of the magnitude of the DFT, correctly labeled, from 0 to 8000 Hz.

Instructor verification:

3. Plot of the magnitude of the DFT, correctly labeled, from -4000 to 4000 Hz.

Instructor verification:
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