
462 APPENDIX C. LABORATORY EXERCISES

C.8 Comb filters

The purpose of this lab is to use a kind of filter called a comb filter to deeply explore concepts of
impulse response and frequency response.

The lab uses Simulink, like lab C.6. Unlike lab C.6, it will use Simulink for discrete-time processing.
Be warned that discrete-time processing is not the best part of Simulink, so some operations will be
awkward. Moreover, the blocks in the block libraries that support discrete-time processing are not
well organized. It can be difficult to discover how to do something as simple as an N -sample delay
or an impulse source. We will identify the blocks you will need.

The lab is self contained, in the sense that no additional documentation for Simulink is needed. As
in lab C.6, be warned that the on-line documentation is not as good for Simulink as for Matlab. You
will want to follow our instructions closely, or you are likely to discover very puzzling behavior.

C.8.1 Background

To run Simulink, start Matlab and type simulink at the command prompt. This will open the
Simulink library browser. The library browser is a hierarchical listing of libraries with blocks. The
names of the libraries are (usually) suggestive of the contents, although sometimes blocks are found
in surprising places, and some of the libraries have meaningless names (such as “Simulink”).

Here, we explain some of the techniques you will need to implement the lab. You may wish to skim
these now and return them when you need them.

Simulation Parameters

First, since we will be processing audio signals with a sample rate of 8 kHz, you need to force
Simulink to execute the model as a discrete-time model with sample rate 8 kHz (recall that Simulink
excels at continuous-time modeling). Open a blank model by clicking on the document icon at the
upper left of the library browser window. Find the Simulation menu in that window, and select Pa-
rameters. Set the parameters so that the window looks like what is shown in figureC.9. Specifically,
set the stop time to 4.0 (seconds), the solver options to “Fixed-step” and “discrete (no continuous
states),” and the fixed step size to 1/8000.

Reading and Writing Audio Signals

Surprisingly, Simulink is more limited and awkward than Matlab in its ability to read and write
audio files. Consequently, the following will seem like more trouble than it is worth. Bear with
us. Simulink only supports Microsoft wave files, which typically have the suffix “.wav”. You may
obtain a suitable audio file for this lab at

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds/voice.wav



C.8. COMB FILTERS 463

Figure C.9: Simulation parameters for discrete-time audio processing in
Simulink.



464 APPENDIX C. LABORATORY EXERCISES

simout

To Workspace

From Wave File
voice

(8000Hz/1Ch/8b)

From Wave
File

Figure C.10: Test model for Simulink audio.

In Netscape you can go to

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds/

and then right click on the voice.wav filename to bring up a menu, and choose “Save Link As...”
to save the file to your local disk. It is best to then, in the Matlab command window, to change the
current working directory to the one in which you stored the file using the cd command. This will
make it easier to use the file.

To make sure we can process audio signals, create the test model shown in figureC.10. To do this,
in a new model window with the simulation parameters set as explained in “Simulation Parameters”
on page 462, create an instance of the block called From Wave File. This block can be found in
the library browser under DSP Blockset and DSP Sources. Set the parameters of that block
to

File name: voice.wav
Samples per frame: 1

The first parameter assumes you have set the current working directory to the directory containing
the voice.wav file. The second indicates to Simulink that it should produce audio samples one at
a time, rather than collecting them into vectors to produce many at once.

Next, find the To Workspace block in the Simulink block library, under Sinks. Create an instance
of that block in your model. Edit its parameters to change the “Save format” to “Matrix”. You can
leave other parameters at their default values.

Connect the blocks as shown in figure C.10.

Assuming the simulation parameters have been set as explained in “Simulation Parameters” on page
462, you can now run the model by invoking the Start command under the Simulation menu. This
will result in a new variable called simout appearing in the Matlab workspace. In the Matlab
command window, do

soundsc(simout)

to listen to the voice signal.

Note that the DSP Sinks library has a block called To Wave Device, which in theory will
produce audio directly to the audio device. In practice, however, it seems much easier to use the To



C.8. COMB FILTERS 465

S2

S

x y

z

Figure C.11: Comb filter modeled as a feedback system.

Workspace block and the soundsc command. For one thing, soundsc scales the audio signal
automatically. It also circumvents difficulties with real-time performance, platform dependence
problems, and ideosyncrasies with buffering. However, if you wish to try the To Wave Device
block, and can figure out how to get it to work, feel free to use it.

C.8.2 In-lab section

1. Consider the equation

8 n 2 Integers; y(n) = x(n) + �y(n�N) (C.8)

for some real constant � < 1 and integer constant N > 0. Assume the sample rate is 8 kHz.
The input is x(n) and the output is y(n). The equation describes an LTI system where the
output is delayed, scaled, and feb back. Such a system is called a comb filter, for reasons
that will become apparent in this lab. The filter can be viewed as a feedback structure, as
shown in figure C.11, where S2 is a system with input y and output z. Give a similar equation
describing S2, relating y and z.

2. Implement in Simulink the comb filter from part (a). Provide as input the file voice.wav
(see page 462). Send the output to the workspace, just like figure C.10, so that you can use
soundsc to listen to the result. You will probably need the Gain and Sum blocks, which
you can find in the Simlink, Math library. The delay in the feedback path can be implemented
by the Integer Delay block, which you can find in the DSP Blockset, General DSP,
Signal Operations library.

Experiment with the values of N . Try N = 2000 and N = 50 and describe qualitatively the
difference. With N = 50, the effect is called a sewer pipe effect. Why? Can you relate the
physics of sound in a sewer pipe with our mathematical model? Hint: The speed of sound in
air is approximately

331:5 + 0:6Tmeters/second

where T is the temperature in degress celcius. Thus, at 20 degrees, sound travels at about
343.7 meters/second. A delay of N = 50 samples at an 8 kHz sample rate is equal to the time
it takes sound to travel roughly 2 meters, twice the diameter of a 1 meter sewer pipe.



466 APPENDIX C. LABORATORY EXERCISES

Experiment with the value of �. What happens when � = 0? What happens when � = 1?
When � > 1? You may wish to plot the output in addition to listening to it.

3. Modify your Simulink model so that its output is the first one second (the first 8001 samples)
of the impulse response of the system defined by (C.8), with � = 0:99 and N = 40.

The simplest approach is to provide an impulse as an input. To do that, use the Discrete
Pulse Generator block, found in the Simulink, Sources. This block can be (sort of)
configured to generate a Kronecker delta function. Set its amplitude to 1, its period to
something longer than the total number of samples (i.e. larger than 8001), its pulse width to
1, its phase delay to 0, and its sample time to 1/8000.

You will also want to change the simulation parameters to execute your system for 1 second
instead of 4.

Listen to the impulse response. Plot it. Can you identify the tone that you hear? Is it a musical
note? Hint: Over short intervals, a small fraction of a second, the impulse response is roughly
periodic. What is its period?

4. In the next lab you will modify the comb filter to generate excellent musical sounds resem-
bling plucked strings, such as guitars. As a first step towards that goal, we can make a much
less mechanical sound than the impulse response by initializing the delay with random data.
Modify your Simulink model so that the comb filter has no input, and instead of an input, the
Integer Delay block is given random initial conditions. Use � = 0:99 and N = 40, and
change the parameters of the Integer Delay block so that its initial conditions are given
by

randn(1,40)

The Matlab randn function returns a vector of random numbers (try help randn in the
Matlab command window).

Listen to the result. Compare it to the sound of the impulse response. It should be richer,
and less mechanical, but should have the same tone. It is also louder (even though soundsc
scales the sound).

C.8.3 Independent section

The comb filter is an LTI system. Figure C.11 is a special case of the feedback system considered
in section 8.5.2, which is shown there to be LTI. Thus, if the input is

x(n) = ej!n

then the output is
y(n) = H(!)ej!n

where H:Reals ! Complex is the frequency response. Find the frequency response of the comb
filter. Plot the magnitude of the frequency response over the range 0 to 4 kHz using Matlab. Why
is it called a comb filter? Explain the connection between the tone that you hear and the frequency
response.



C.8. COMB FILTERS 467

Instructor Verification Sheet for C.8

Name: Date:

1. Found an equation for S2, relating y and z.

Instructor verification:

2. Constructed Simulink model and obtained both sewer pipe effect and echo effect.

Instructor verification:

3. Constructed the impulse response and identified the tone.

Instructor verification:

4. Created sound with random values in the feedback delay.

Instructor verification:


	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork 

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises


	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations


	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels


	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates


	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section


	Index

