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C.8 Comb filters

The purpose of this lab is to use a kind of filter called a comb filter to deeply explore concepts of
impulse response and frequency response.

The lab uses Simulink, like lab C.6. Unlike lab C.6, it will use Simulink for discrete-time processing.
Be warned that discrete-time processing is not the best part of Simulink, so some operations will be
awkward. Moreover, the blocks in the block libraries that support discrete-time processing are not
well organized. It can be difficult to discover how to do something as simple as an N -sample delay
or an impulse source. We will identify the blocks you will need.

The lab is self contained, in the sense that no additional documentation for Simulink is needed. As
in lab C.6, be warned that the on-line documentation is not as good for Simulink as for Matlab. You
will want to follow our instructions closely, or you are likely to discover very puzzling behavior.

C.8.1 Background

To run Simulink, start Matlab and type simulink at the command prompt. This will open the
Simulink library browser. The library browser is a hierarchical listing of libraries with blocks. The
names of the libraries are (usually) suggestive of the contents, although sometimes blocks are found
in surprising places, and some of the libraries have meaningless names (such as “Simulink”).

Here, we explain some of the techniques you will need to implement the lab. You may wish to skim
these now and return them when you need them.

Simulation Parameters

First, since we will be processing audio signals with a sample rate of 8 kHz, you need to force
Simulink to execute the model as a discrete-time model with sample rate 8 kHz (recall that Simulink
excels at continuous-time modeling). Open a blank model by clicking on the document icon at the
upper left of the library browser window. Find the Simulation menu in that window, and select Pa-
rameters. Set the parameters so that the window looks like what is shown in figureC.9. Specifically,
set the stop time to 4.0 (seconds), the solver options to “Fixed-step” and “discrete (no continuous
states),” and the fixed step size to 1/8000.

Reading and Writing Audio Signals

Surprisingly, Simulink is more limited and awkward than Matlab in its ability to read and write
audio files. Consequently, the following will seem like more trouble than it is worth. Bear with
us. Simulink only supports Microsoft wave files, which typically have the suffix “.wav”. You may
obtain a suitable audio file for this lab at

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds/voice.wav
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Figure C.9: Simulation parameters for discrete-time audio processing in
Simulink.
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Figure C.10: Test model for Simulink audio.

In Netscape you can go to

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds/

and then right click on the voice.wav filename to bring up a menu, and choose “Save Link As...”
to save the file to your local disk. It is best to then, in the Matlab command window, to change the
current working directory to the one in which you stored the file using the cd command. This will
make it easier to use the file.

To make sure we can process audio signals, create the test model shown in figureC.10. To do this,
in a new model window with the simulation parameters set as explained in “Simulation Parameters”
on page 462, create an instance of the block called From Wave File. This block can be found in
the library browser under DSP Blockset and DSP Sources. Set the parameters of that block
to

File name: voice.wav
Samples per frame: 1

The first parameter assumes you have set the current working directory to the directory containing
the voice.wav file. The second indicates to Simulink that it should produce audio samples one at
a time, rather than collecting them into vectors to produce many at once.

Next, find the To Workspace block in the Simulink block library, under Sinks. Create an instance
of that block in your model. Edit its parameters to change the “Save format” to “Matrix”. You can
leave other parameters at their default values.

Connect the blocks as shown in figure C.10.

Assuming the simulation parameters have been set as explained in “Simulation Parameters” on page
462, you can now run the model by invoking the Start command under the Simulation menu. This
will result in a new variable called simout appearing in the Matlab workspace. In the Matlab
command window, do

soundsc(simout)

to listen to the voice signal.

Note that the DSP Sinks library has a block called To Wave Device, which in theory will
produce audio directly to the audio device. In practice, however, it seems much easier to use the To
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Figure C.11: Comb filter modeled as a feedback system.

Workspace block and the soundsc command. For one thing, soundsc scales the audio signal
automatically. It also circumvents difficulties with real-time performance, platform dependence
problems, and ideosyncrasies with buffering. However, if you wish to try the To Wave Device
block, and can figure out how to get it to work, feel free to use it.

C.8.2 In-lab section

1. Consider the equation

8 n 2 Integers; y(n) = x(n) + �y(n�N) (C.8)

for some real constant � < 1 and integer constant N > 0. Assume the sample rate is 8 kHz.
The input is x(n) and the output is y(n). The equation describes an LTI system where the
output is delayed, scaled, and feb back. Such a system is called a comb filter, for reasons
that will become apparent in this lab. The filter can be viewed as a feedback structure, as
shown in figure C.11, where S2 is a system with input y and output z. Give a similar equation
describing S2, relating y and z.

2. Implement in Simulink the comb filter from part (a). Provide as input the file voice.wav
(see page 462). Send the output to the workspace, just like figure C.10, so that you can use
soundsc to listen to the result. You will probably need the Gain and Sum blocks, which
you can find in the Simlink, Math library. The delay in the feedback path can be implemented
by the Integer Delay block, which you can find in the DSP Blockset, General DSP,
Signal Operations library.

Experiment with the values of N . Try N = 2000 and N = 50 and describe qualitatively the
difference. With N = 50, the effect is called a sewer pipe effect. Why? Can you relate the
physics of sound in a sewer pipe with our mathematical model? Hint: The speed of sound in
air is approximately

331:5 + 0:6Tmeters/second

where T is the temperature in degress celcius. Thus, at 20 degrees, sound travels at about
343.7 meters/second. A delay of N = 50 samples at an 8 kHz sample rate is equal to the time
it takes sound to travel roughly 2 meters, twice the diameter of a 1 meter sewer pipe.
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Experiment with the value of �. What happens when � = 0? What happens when � = 1?
When � > 1? You may wish to plot the output in addition to listening to it.

3. Modify your Simulink model so that its output is the first one second (the first 8001 samples)
of the impulse response of the system defined by (C.8), with � = 0:99 and N = 40.

The simplest approach is to provide an impulse as an input. To do that, use the Discrete
Pulse Generator block, found in the Simulink, Sources. This block can be (sort of)
configured to generate a Kronecker delta function. Set its amplitude to 1, its period to
something longer than the total number of samples (i.e. larger than 8001), its pulse width to
1, its phase delay to 0, and its sample time to 1/8000.

You will also want to change the simulation parameters to execute your system for 1 second
instead of 4.

Listen to the impulse response. Plot it. Can you identify the tone that you hear? Is it a musical
note? Hint: Over short intervals, a small fraction of a second, the impulse response is roughly
periodic. What is its period?

4. In the next lab you will modify the comb filter to generate excellent musical sounds resem-
bling plucked strings, such as guitars. As a first step towards that goal, we can make a much
less mechanical sound than the impulse response by initializing the delay with random data.
Modify your Simulink model so that the comb filter has no input, and instead of an input, the
Integer Delay block is given random initial conditions. Use � = 0:99 and N = 40, and
change the parameters of the Integer Delay block so that its initial conditions are given
by

randn(1,40)

The Matlab randn function returns a vector of random numbers (try help randn in the
Matlab command window).

Listen to the result. Compare it to the sound of the impulse response. It should be richer,
and less mechanical, but should have the same tone. It is also louder (even though soundsc
scales the sound).

C.8.3 Independent section

The comb filter is an LTI system. Figure C.11 is a special case of the feedback system considered
in section 8.5.2, which is shown there to be LTI. Thus, if the input is

x(n) = ej!n

then the output is
y(n) = H(!)ej!n

where H:Reals ! Complex is the frequency response. Find the frequency response of the comb
filter. Plot the magnitude of the frequency response over the range 0 to 4 kHz using Matlab. Why
is it called a comb filter? Explain the connection between the tone that you hear and the frequency
response.
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Instructor Verification Sheet for C.8

Name: Date:

1. Found an equation for S2, relating y and z.

Instructor verification:

2. Constructed Simulink model and obtained both sewer pipe effect and echo effect.

Instructor verification:

3. Constructed the impulse response and identified the tone.

Instructor verification:

4. Created sound with random values in the feedback delay.

Instructor verification:
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