
C.7. SPECTRUM 453

C.7 Spectrum

The purpose of this lab is to learn to examine the frequency domain content of signals. Two methods
will be used. The first method will be to plot the discrete Fourier series coefficients of finite signals.
The second will be to plot the Fourier series coefficients of finite segments of time-varying signals,
creating what is known as a spectrogram.

C.7.1 Background

A finite discrete-time signal with p samples has a discrete-time Fourier series expansion

x(n) = A0 +

(p�1)=2X
k=1

Ak cos(k!0n+ �k) (C.6)

for p odd and

x(n) = A0 +

p=2X
k=1

Ak cos(k!0n+ �k) (C.7)

for p even, where !0 = 2�=p.

A finite signal can be considered to be one cycle of a periodic signal with fundamental frequency
!0, in units of radians per sample, or 1=p in Hertz. In this lab, we will assume p is always even,
and we will plot the magnitude of each of the frequency components, jA0j; � � � ; jAp=2j for each of
several signals, in order to gain intuition about the meaning of these coefficients.

Notice that each jAkj gives the amplitude of the sinusoidal component of the signal at frequency
k!0 = k2�=p, which has units of radians per sample. In order to interpret these coefficients, you
will probably want to convert these units to Hertz. If the sampling frequency is fs samples per
second, then you can do the conversion as follows (see box on page203):

(k2�=p)[radians/sample]fs[samples/second]
2�[radians/cycle]

= kfs=p[cycles/second]

Thus, each jAkj gives the amplitude of the sinusoidal component of the signal at frequency kfs=p
Hz.

Note that Matlab does not have any built-in function that directly computes the discrete Fourier
series coefficients. However, it does have a realization of the fast Fourier transform, a function
called fft, which can be used to construct the Fourier series coefficients. In particular, fouri-
erSeries is a function that returns the DFS coefficients2:

function [magnitude, phase] = fourierSeries(x)
% FOURIERSERIES - Return the magnitude and phase of each
% sinusoidal component in the Fourier series expansion for

2This function can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/fourierSeries.m.



454 APPENDIX C. LABORATORY EXERCISES

% the argument, which is interpreted as one cycle of a
% periodic signal. The argument is assumed to have an
% even number p of samples. The first returned value is an
% array containing the amplitudes of the sinusoidal
% components in the Fourier series expansion, with
% frequencies 0, 1/p, 2/p, ... 1/2. The second returned
% value is an array of phases for the sinusoidal
% components. Both returned values are arrays with length
% (p/2)+1.
p = length(x);
f = fft(x)/p;
magnitude(1) = abs(f(1));
upper = p/2;
magnitude(2:upper) = 2*abs(f(2:upper));
magnitude(upper+1) = abs(f(upper+1));
phase(1) = angle(f(1));
phase(2:upper) = angle(f(2:upper));
phase(upper+1) = angle(f(upper+1));

In particular, if you have an array x with even length,

[A, phi] = fourierSeries(x);

returns the DFS coefficients in a pair of vectors.

To plot the magnitudes of the Fourier series coefficients vs. frequency, you can simply say

p = length(x);
frequencies = [0:fs/p:fs/2];
plot(frequencies, A);
xlabel(’frequency in Hertz’);
ylabel(’amplitude’);

where fs has been set to the sampling frequency (in samples per second). The line

frequencies = [0:fs/p:fs/2];

bears further examination. It produces a vector with the same length as A, namely 1+ p=2, where p
is the length of the x vector. The elements of the vector are the frequencies in Hertz of each Fourier
series component.

C.7.2 In-lab section

1. To get started, consider the signal generated by



C.7. SPECTRUM 455

t = [0:1/8000:1-1/8000];
x = sin(2*pi*800*t);

This is 8000 samples of an 800 Hz sinusoid sampled at 8 kHz. Listen to it. Use the fouri-
erSeries function as described above to plot the magnitude of its discrete Fourier series
coefficients. Explain the plot.

Consider the continuous-time sinusoid

x(t) = sin(2�800t):

The x vector calculated above is 8000 samples of this sinusoid taken at a sample rate of 8
kHz. Notice that the frequency of the sinusoid is the derivative of the argument to the sine
function,

! =
d

dt
2�800t = 2�800

in units of radians per second. This fact will be useful below when looking at more interesting
signals.

2. With t as above, consider the more interesting waveform generated by

y = sin(2*pi*800*(t.*t));

This is called a chirp. Listen to it. Plot its Fourier series coefficients using the fouri-
erSeries function as described above.

This chirp is 8 kHz samples of the continuous-time waveform

y(t) = sin(2�800t2):

The instantaneous frequency of this waveform is defined to be the derivative of the argument
to the sine function,

!(t) =
d

dt
2�800t2 = 4�800t:

For the given values t used to compute samples y, what is the range of instantaneous fre-
quencies? Explain how this corresponds with the plot of the Fourier series coefficients, and
how it corresponds with what you hear.

3. The Fourier series coefficients computed in part 2 describe the range of instantaneous fre-
quencies of the chirp pretty well, but they do not describe the dynamics very well. Plot the
Fourier series coefficients for the waveform given by

z = y(8000:-1:1);

Listen to this sound. Does it sound the same as y? Does its Fourier series plot look the same?
Why?



456 APPENDIX C. LABORATORY EXERCISES

4. The chirp signal has a dynamically varying frequency-domain structure. More precisely, there
are certain properties of the signal that change slowly enough that our ears detect them as a
change in the frequency structure of the signal rather than as part of the frequency structure
(the timbre or tonal content). Recall that our ears do not hear sounds below about 30 Hz.
Instead, the human brain hears changes below 30 Hz as variations in the nature of the sound
rather than as frequency domain content. The Fourier series methods used above fail to reflect
this psychoacoustic phenomenon.

A simple fix is the short-time Fourier series. The chirp signals above have 8000 samples,
lasting one second. But since we don’t hear variations below 30 Hz as frequency content, it
probably makes sense to reanalyze the chirp signal for frequency content 30 times in the one
second. This can be done using the following function:3

function waterfallSpectrogram(s, fs, sizeofspectra, numofspectra)

% WATERFALLSPECTROGRAM - Display a 3-D plot of a spectrogram
% of the signal s.
%
% Arguments:
% s - The signal.
% fs - The sampling frequency (in samples per second).
% sizeofspectra - The number of samples to use to calculate each
% spectrum.
% numofspectra - The number of spectra to calculate.

frequencies = [0:fs/sizeofspectra:fs/2];
offset = floor((length(s)-sizeofspectra)/numofspectra);
for i=0:(numofspectra-1)

start = i*offset;
[A, phi] = fourierSeries(s((1+start):(start+sizeofspectra)));
magnitude(:,(i+1)) = A’;

end
waterfall(frequencies, 0:(numofspectra-1), magnitude’);
xlabel(’frequency’);
ylabel(’time’);
zlabel(’magnitude’);

To invoke this function on the chirp, do

t = [0:1/8000:1-1/8000];
y = sin(2*pi*800*(t.*t));
waterfallSpectrogram(y, 8000, 400, 30);

which yields the plot shown in figure C.6. That plot shows 30 distinct sets of Fourier series
coefficients, each calculated using 400 of the 8000 available samples. Explain how this plot
describes the sound you hear. Create a similar plot for the reverse chirp, signal z given in part
3.

3This code can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/waterfallSpectrogram.m.



C.7. SPECTRUM 457

0

1000

2000

3000

4000

0

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

frequencytime

m
ag

ni
tu

de

Figure C.6: Time varying discrete Fourier series analysis of a chirp.



458 APPENDIX C. LABORATORY EXERCISES

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

3500

4000

Figure C.7: Spectrogram of the chirp signal.

5. Figure C.6 is reasonably easy to interpret because of the relatively simple structure of the chirp
signal. More interesting signals, however, become very hard to view this way. An alternative
visualization of the frequency content of such signals is the spectrogram. A spectrogram is a
plot like that in figure C.6, but looking straight down from above the plot. The height of each
point is depicted by a color (or intensity, in a gray-scale image) rather than by height. You
can generate a spectrogram of the chirp as follows:

specgram(y,512,8000);

This results in the image shown in figure C.7. There, the default colormap is used, which is
jet. A rendition of this colormap is given in figureC.3. You could experiment with different
colormaps for rendering this spectrogram by using the colormap command. A particularly
useful one is hot, obtained by the command

colormap(hot);

Create a similar image for the reverse chirp, z, of part 3.

6. A number of audio files are available at

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds



C.7. SPECTRUM 459

Time

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5
0

1000

2000

3000

4000

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

Figure C.8: Spectrogram and plot of a voice segment (one of the authors
saying “this is the sound of my voice.”

In Netscape, you can save these to your local computer disk by placing the mouse on the file
name, clicking with the right mouse button, and selecting ”Save Link As.” For example, if
you save voice.au to your current working directory, then in Matlab you can do

y = auread(’voice.au’);
soundsc(y)
subplot(2,1,1); specgram(y,1024,8000,[],900)
subplot(2,1,2); plot(y)

to get the result shown in figure C.8. Use this technique to get similar results for other sound
files in the same directory. Interpret the results.

C.7.3 Independent section

1. For the chirp signal as above,

y = sin(2*pi*800*(t.*t));



460 APPENDIX C. LABORATORY EXERCISES

generate the discrete Fourier series coefficients using fourierSeries as explained in sec-
tion C.7.1. The, write a Matlab function that uses (C.7) to reconstruct the original signal from
the coefficients. Your Matlab function should begin as follows:

function x = reconstruct(magnitude, phase)
% RECONSTRUCT - Given a vector of magnitudes and a vector
% of phases, construct a signal that has these magnitudes
% and phases as its discrete Fourier series coefficients.
% The arguments are assumed to have odd length, p/2 + 1,
% and the returned vector will have length p.

Note that this function will require a large number of computations. If your computer is not
up to the task, the construct the Fourier series coefficients for the first 1000 samples instead of
all 8000, and reconstruct the original from those coefficients. To check that the reconstruction
works, subtract your reconstructed signal from y and examine the difference. The difference
will not be perfectly zero, but it should be very small compared to the original signal. Plot
the difference signal.

2. In the remainder of this lab, we will study beat signals, which are combinations of sinusoidal
signals with closely spaced frequencies. First, we need to develop some background.

Use Euler’s relation to show that

2 cos(!ct) cos(!�t) = cos((!c + !�)t) + cos((!c � !�)t):

for any !c, !�, and t in Reals. Hint: See box on page 243.

A consequence of this identity is that if two sinusoidal signals with different frequencies, !c
and !�, are multiplied together, the result is the same as if two sinusoids with two other
frequencies, !c + !� and !c � !�, are added together.

3. Construct the sum of two cosine waves with frequencies of 790 and 810 Hz. Assume the
sample rate is 8 kHz, and construct a vector in Matlab with 8000 samples. Listen to it.
Describe what you hear. Plot the first 800 samples (1/10 second). Explain how the plot
illustrates what you hear. Explain how the identity in part2 explains the plot.

4. What is the period of the waveform in part 3? What is the fundamental frequency for its
Fourier series expansion? Plot its discrete Fourier series coefficients (the magnitude only)
using fourierSeries. Plot its spectrogram using specgram. Choose the parameters
of specgram so that the warble is clearly visible. Which of these two plots best reflects
perception?



C.7. SPECTRUM 461

Instructor Verification Sheet for C.7

Name: Date:

1. Plot of the DFS coefficients of the sinusoid, with explanation.

Instructor verification:

2. Plot of the DFS, plus range of instantaneous frequencies, plus correspondence with the sound.

Instructor verification:

3. Plot of the DFS is the same, yet the sound is different. Explanation.

Instructor verification:

4. Explain how figure C.6 describes the sound you hear. Plot the reverse chirp.

Instructor verification:

5. Create and interpret a spectrogram for one other sound file, at least.

Instructor verification:


	Preface
	Notes to Instructors
	Signals and Systems
	Signals
	Audio signals
	Images
	Probing further: Household electrical power
	Video signals
	Probing further: Color and light
	Signals representing physical attributes
	Sequences
	Discrete signals and sampling

	Systems
	Systems as functions
	Telecommunications systems
	Probing further: Wireless communication
	Probing further: LEO telephony
	Audio storage and retrieval
	Probing further: Encrypted speech
	Modem negotiation
	Feedback control systems

	Summary

	Defining Signals and Systems
	Defining functions
	Declarative assignment
	Graphs
	Probing further: Relations
	Tables
	Procedures
	Composition
	Probing further: Declarative interpretation of imperative definitions
	Declarative vs. imperative

	Defining signals
	Declarative definitions
	Imperative definitions
	Physical modeling
	Probing further: Physics of a Tuning Fork 

	Defining systems
	Memoryless systems and systems with memory
	Differential equations
	Difference equations
	Composing systems using block diagrams
	Probing further: Composition of graphs

	Summary

	State Machines
	Structure of state machines
	Updates
	Stuttering

	Finite state machines
	State transition diagrams
	Update table

	Nondeterministic state machines
	State transition diagram
	Sets and functions model

	Simulation and bisimulation
	Relating behaviors

	Summary

	Composing State Machines
	Synchrony
	Side-by-side composition
	Cascade composition
	Product-form inputs and outputs
	General feedforward composition
	Hierarchical composition
	Feedback
	Feedback composition with no inputs
	Feedback composition with inputs
	Procedure for general feedback composition

	Nondeterministic machines
	Controller design with state machines
	Summary

	Linear Systems
	Operation of an infinite state machine
	Time
	Basics: Functions yielding tuples
	Linear functions
	Basics: Matrices and vectors

	Basics: Matrix arithmetic
	The [A,B,C,D] representation of a discrete linear system
	One-dimensional SISO systems
	Zero-state and zero-input response

	Multidimensional SISO systems
	Multidimensional MIMO systems
	Linear input-output function

	Continuous-time state-space models
	Summary

	Probing further: Approximating continuous-time systems

	Hybrid Systems
	Mixed models
	Modal models
	Timed automata
	More interesting dynamics

	Probing further: Internet protocols
	Supervisory control
	Formal model
	Summary

	Frequency Domain
	Frequency decomposition
	Basics: Frequencies in Hertz and radians
	Basics: Ranges of frequencies
	Probing further: Circle of fifths

	Phase
	Spatial frequency
	Periodic and finite signals
	Fourier series
	Probing further: Uniform convergence of the Fourier series
	Probing further: Mean square convergence of the Fourier series
	Probing further: Dirichlet conditions for validity of the Fourier series
	Uniqueness of the Fourier series
	Periodic, finite, and aperiodic signals
	Fourier series approximations to images

	Discrete-time signals
	Periodicity
	Basics: Discrete-time frequencies
	The discrete-time Fourier series

	Summary
	Exercises


	Frequency Response
	LTI systems
	Time invariance
	Linearity
	Linearity and time-invariance
	Discrete-time LTI systems

	Finding and using the frequency response
	Linear difference and differential equations
	Basics: Sinusoids in terms of complex exponentials
	Tips and Tricks: Phasors
	The Fourier series with complex exponentials
	Examples
	Determining the Fourier series coefficients
	Probing further: Relating DFS coefficients
	Probing further: Formula for Fourier series coefficients
	Probing further: Exchanging integrals and summations


	Negative frequencies
	Frequency response and the Fourier series
	Frequency response of composite systems
	Cascade connection
	Feedback connection
	Probing further: Feedback systems are LTI

	Summary

	Filtering
	Convolution
	Convolution sum and integral
	Impulses
	Signals as sums of weighted delta functions
	Impulse response and convolution

	Frequency response and impulse response
	Causality
	Finite impulse response (FIR) filters
	Probing further: Causality
	Design of FIR filters
	Decibels


	Probing further: Decibels
	Infinite impulse response (IIR) filters
	Designing IIR filters

	Implementation of filters
	Matlab implementation
	Signal flow graphs
	Probing further: Java implementation of an FIR filter
	Probing further: Programmable DSP implementation of an FIR filter

	Summary

	The Four Fourier Transforms
	Notation
	The Fourier series (FS)
	Probing further: Showing inverse relations

	The discrete Fourier transform (DFT)
	The discrete-Time Fourier transform (DTFT)
	The continuous-time Fourier transform
	Fourier transforms vs. Fourier series
	Fourier transforms of finite signals
	Fourier analysis of a speech signal
	Fourier transforms of periodic signals

	Properties of Fourier transforms
	Convolution
	Probing further: Multiplying signals
	Conjugate symmetry
	Time shifting
	Linearity
	Constant signals
	Frequency shifting and modulation

	Summary

	Sampling and Reconstruction
	Sampling
	Basics: Units
	Sampling a sinusoid
	Aliasing
	Perceived pitch experiment
	Avoiding aliasing ambiguities

	Reconstruction
	A model for reconstruction
	The Nyquist-Shannon sampling theorem

	Probing further: Sampling
	Summary

	Sets and Functions
	Sets
	Assignment and assertion
	Sets of sets
	Variables and predicates
	Probing further: Predicates in Matlab
	Quantification over sets
	Some useful sets
	Set operations: union, intersection, complement
	Predicate operations
	Permutations and combinations
	Product sets
	Basics: Tuples, strings, and sequences
	Evaluating a predicate expression

	Functions
	Defining functions
	Tuples and sequences as functions
	Function properties
	Probing further: Infinite sets
	Probing further: Even bigger sets

	Summary

	Complex Numbers
	Imaginary numbers
	Arithmetic of imaginary numbers
	Complex numbers
	Arithmetic of complex numbers
	Exponentials
	Polar coordinates
	Basics: From Cartesian to polar coordinates


	Laboratory Exercises
	Arrays and sound
	In-lab section
	Independent section

	Images
	Images in Matlab
	In-lab section
	Independent section

	State machines
	Background
	In-lab section
	Independent section

	Control systems
	Background
	In-lab section
	Independent section

	Difference equations
	In-lab section
	Independent section

	Differential equations
	Background
	In-lab section
	Independent section

	Spectrum
	Background
	In-lab section
	Independent section

	Comb filters
	Background
	In-lab section
	Independent section

	Plucked string instrument
	Background
	In-lab section
	Independent section

	Modulation and demodulation
	Background
	In-lab section
	Independent section

	Sampling and aliasing
	In-lab section


	Index

