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C.7 Spectrum

The purpose of this lab is to learn to examine the frequency domain content of signals. Two methods
will be used. The first method will be to plot the discrete Fourier series coefficients of finite signals.
The second will be to plot the Fourier series coefficients of finite segments of time-varying signals,
creating what is known as a spectrogram.

C.7.1 Background

A finite discrete-time signal with p samples has a discrete-time Fourier series expansion

x(n) = A0 +

(p�1)=2X
k=1

Ak cos(k!0n+ �k) (C.6)

for p odd and

x(n) = A0 +

p=2X
k=1

Ak cos(k!0n+ �k) (C.7)

for p even, where !0 = 2�=p.

A finite signal can be considered to be one cycle of a periodic signal with fundamental frequency
!0, in units of radians per sample, or 1=p in Hertz. In this lab, we will assume p is always even,
and we will plot the magnitude of each of the frequency components, jA0j; � � � ; jAp=2j for each of
several signals, in order to gain intuition about the meaning of these coefficients.

Notice that each jAkj gives the amplitude of the sinusoidal component of the signal at frequency
k!0 = k2�=p, which has units of radians per sample. In order to interpret these coefficients, you
will probably want to convert these units to Hertz. If the sampling frequency is fs samples per
second, then you can do the conversion as follows (see box on page203):

(k2�=p)[radians/sample]fs[samples/second]
2�[radians/cycle]

= kfs=p[cycles/second]

Thus, each jAkj gives the amplitude of the sinusoidal component of the signal at frequency kfs=p
Hz.

Note that Matlab does not have any built-in function that directly computes the discrete Fourier
series coefficients. However, it does have a realization of the fast Fourier transform, a function
called fft, which can be used to construct the Fourier series coefficients. In particular, fouri-
erSeries is a function that returns the DFS coefficients2:

function [magnitude, phase] = fourierSeries(x)
% FOURIERSERIES - Return the magnitude and phase of each
% sinusoidal component in the Fourier series expansion for

2This function can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/fourierSeries.m.
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% the argument, which is interpreted as one cycle of a
% periodic signal. The argument is assumed to have an
% even number p of samples. The first returned value is an
% array containing the amplitudes of the sinusoidal
% components in the Fourier series expansion, with
% frequencies 0, 1/p, 2/p, ... 1/2. The second returned
% value is an array of phases for the sinusoidal
% components. Both returned values are arrays with length
% (p/2)+1.
p = length(x);
f = fft(x)/p;
magnitude(1) = abs(f(1));
upper = p/2;
magnitude(2:upper) = 2*abs(f(2:upper));
magnitude(upper+1) = abs(f(upper+1));
phase(1) = angle(f(1));
phase(2:upper) = angle(f(2:upper));
phase(upper+1) = angle(f(upper+1));

In particular, if you have an array x with even length,

[A, phi] = fourierSeries(x);

returns the DFS coefficients in a pair of vectors.

To plot the magnitudes of the Fourier series coefficients vs. frequency, you can simply say

p = length(x);
frequencies = [0:fs/p:fs/2];
plot(frequencies, A);
xlabel(’frequency in Hertz’);
ylabel(’amplitude’);

where fs has been set to the sampling frequency (in samples per second). The line

frequencies = [0:fs/p:fs/2];

bears further examination. It produces a vector with the same length as A, namely 1+ p=2, where p
is the length of the x vector. The elements of the vector are the frequencies in Hertz of each Fourier
series component.

C.7.2 In-lab section

1. To get started, consider the signal generated by
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t = [0:1/8000:1-1/8000];
x = sin(2*pi*800*t);

This is 8000 samples of an 800 Hz sinusoid sampled at 8 kHz. Listen to it. Use the fouri-
erSeries function as described above to plot the magnitude of its discrete Fourier series
coefficients. Explain the plot.

Consider the continuous-time sinusoid

x(t) = sin(2�800t):

The x vector calculated above is 8000 samples of this sinusoid taken at a sample rate of 8
kHz. Notice that the frequency of the sinusoid is the derivative of the argument to the sine
function,

! =
d

dt
2�800t = 2�800

in units of radians per second. This fact will be useful below when looking at more interesting
signals.

2. With t as above, consider the more interesting waveform generated by

y = sin(2*pi*800*(t.*t));

This is called a chirp. Listen to it. Plot its Fourier series coefficients using the fouri-
erSeries function as described above.

This chirp is 8 kHz samples of the continuous-time waveform

y(t) = sin(2�800t2):

The instantaneous frequency of this waveform is defined to be the derivative of the argument
to the sine function,

!(t) =
d

dt
2�800t2 = 4�800t:

For the given values t used to compute samples y, what is the range of instantaneous fre-
quencies? Explain how this corresponds with the plot of the Fourier series coefficients, and
how it corresponds with what you hear.

3. The Fourier series coefficients computed in part 2 describe the range of instantaneous fre-
quencies of the chirp pretty well, but they do not describe the dynamics very well. Plot the
Fourier series coefficients for the waveform given by

z = y(8000:-1:1);

Listen to this sound. Does it sound the same as y? Does its Fourier series plot look the same?
Why?
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4. The chirp signal has a dynamically varying frequency-domain structure. More precisely, there
are certain properties of the signal that change slowly enough that our ears detect them as a
change in the frequency structure of the signal rather than as part of the frequency structure
(the timbre or tonal content). Recall that our ears do not hear sounds below about 30 Hz.
Instead, the human brain hears changes below 30 Hz as variations in the nature of the sound
rather than as frequency domain content. The Fourier series methods used above fail to reflect
this psychoacoustic phenomenon.

A simple fix is the short-time Fourier series. The chirp signals above have 8000 samples,
lasting one second. But since we don’t hear variations below 30 Hz as frequency content, it
probably makes sense to reanalyze the chirp signal for frequency content 30 times in the one
second. This can be done using the following function:3

function waterfallSpectrogram(s, fs, sizeofspectra, numofspectra)

% WATERFALLSPECTROGRAM - Display a 3-D plot of a spectrogram
% of the signal s.
%
% Arguments:
% s - The signal.
% fs - The sampling frequency (in samples per second).
% sizeofspectra - The number of samples to use to calculate each
% spectrum.
% numofspectra - The number of spectra to calculate.

frequencies = [0:fs/sizeofspectra:fs/2];
offset = floor((length(s)-sizeofspectra)/numofspectra);
for i=0:(numofspectra-1)

start = i*offset;
[A, phi] = fourierSeries(s((1+start):(start+sizeofspectra)));
magnitude(:,(i+1)) = A’;

end
waterfall(frequencies, 0:(numofspectra-1), magnitude’);
xlabel(’frequency’);
ylabel(’time’);
zlabel(’magnitude’);

To invoke this function on the chirp, do

t = [0:1/8000:1-1/8000];
y = sin(2*pi*800*(t.*t));
waterfallSpectrogram(y, 8000, 400, 30);

which yields the plot shown in figure C.6. That plot shows 30 distinct sets of Fourier series
coefficients, each calculated using 400 of the 8000 available samples. Explain how this plot
describes the sound you hear. Create a similar plot for the reverse chirp, signal z given in part
3.

3This code can be found at http://www.eecs.berkeley.edu/ eal/eecs20/matlab/waterfallSpectrogram.m.



C.7. SPECTRUM 457

0

1000

2000

3000

4000

0

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

frequencytime

m
ag

ni
tu

de

Figure C.6: Time varying discrete Fourier series analysis of a chirp.
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Figure C.7: Spectrogram of the chirp signal.

5. Figure C.6 is reasonably easy to interpret because of the relatively simple structure of the chirp
signal. More interesting signals, however, become very hard to view this way. An alternative
visualization of the frequency content of such signals is the spectrogram. A spectrogram is a
plot like that in figure C.6, but looking straight down from above the plot. The height of each
point is depicted by a color (or intensity, in a gray-scale image) rather than by height. You
can generate a spectrogram of the chirp as follows:

specgram(y,512,8000);

This results in the image shown in figure C.7. There, the default colormap is used, which is
jet. A rendition of this colormap is given in figureC.3. You could experiment with different
colormaps for rendering this spectrogram by using the colormap command. A particularly
useful one is hot, obtained by the command

colormap(hot);

Create a similar image for the reverse chirp, z, of part 3.

6. A number of audio files are available at

http://www.eecs.berkeley.edu/˜eal/eecs20/sounds
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Figure C.8: Spectrogram and plot of a voice segment (one of the authors
saying “this is the sound of my voice.”

In Netscape, you can save these to your local computer disk by placing the mouse on the file
name, clicking with the right mouse button, and selecting ”Save Link As.” For example, if
you save voice.au to your current working directory, then in Matlab you can do

y = auread(’voice.au’);
soundsc(y)
subplot(2,1,1); specgram(y,1024,8000,[],900)
subplot(2,1,2); plot(y)

to get the result shown in figure C.8. Use this technique to get similar results for other sound
files in the same directory. Interpret the results.

C.7.3 Independent section

1. For the chirp signal as above,

y = sin(2*pi*800*(t.*t));
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generate the discrete Fourier series coefficients using fourierSeries as explained in sec-
tion C.7.1. The, write a Matlab function that uses (C.7) to reconstruct the original signal from
the coefficients. Your Matlab function should begin as follows:

function x = reconstruct(magnitude, phase)
% RECONSTRUCT - Given a vector of magnitudes and a vector
% of phases, construct a signal that has these magnitudes
% and phases as its discrete Fourier series coefficients.
% The arguments are assumed to have odd length, p/2 + 1,
% and the returned vector will have length p.

Note that this function will require a large number of computations. If your computer is not
up to the task, the construct the Fourier series coefficients for the first 1000 samples instead of
all 8000, and reconstruct the original from those coefficients. To check that the reconstruction
works, subtract your reconstructed signal from y and examine the difference. The difference
will not be perfectly zero, but it should be very small compared to the original signal. Plot
the difference signal.

2. In the remainder of this lab, we will study beat signals, which are combinations of sinusoidal
signals with closely spaced frequencies. First, we need to develop some background.

Use Euler’s relation to show that

2 cos(!ct) cos(!�t) = cos((!c + !�)t) + cos((!c � !�)t):

for any !c, !�, and t in Reals. Hint: See box on page 243.

A consequence of this identity is that if two sinusoidal signals with different frequencies, !c
and !�, are multiplied together, the result is the same as if two sinusoids with two other
frequencies, !c + !� and !c � !�, are added together.

3. Construct the sum of two cosine waves with frequencies of 790 and 810 Hz. Assume the
sample rate is 8 kHz, and construct a vector in Matlab with 8000 samples. Listen to it.
Describe what you hear. Plot the first 800 samples (1/10 second). Explain how the plot
illustrates what you hear. Explain how the identity in part2 explains the plot.

4. What is the period of the waveform in part 3? What is the fundamental frequency for its
Fourier series expansion? Plot its discrete Fourier series coefficients (the magnitude only)
using fourierSeries. Plot its spectrogram using specgram. Choose the parameters
of specgram so that the warble is clearly visible. Which of these two plots best reflects
perception?
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Instructor Verification Sheet for C.7

Name: Date:

1. Plot of the DFS coefficients of the sinusoid, with explanation.

Instructor verification:

2. Plot of the DFS, plus range of instantaneous frequencies, plus correspondence with the sound.

Instructor verification:

3. Plot of the DFS is the same, yet the sound is different. Explanation.

Instructor verification:

4. Explain how figure C.6 describes the sound you hear. Plot the reverse chirp.

Instructor verification:

5. Create and interpret a spectrogram for one other sound file, at least.

Instructor verification:
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