Bill Chun Wai Hung
17508938
20N Lab 03 Report
Introduction:

To use Matlab to construct finite state machines.

Analyasis
In the lab section, we learned the basics of constructing finite state machines.

Two finite state machines are being constructed in the independent section. The responses of the cat are chosen to be my states, the the actions of the cat are the input and output sets. The reason for using responses to be the states are because I only have 3 states {happy, hungry, dead}. I tried to use the actions to be the states, but there were too many states and transitions.
Lab Portion
1a.
>> d = {'a' 'b' 'a' 'a' 'b'};

>> count = 0;

>> for i = 1:length(d),

 if strcmp(d(i), 'a')

 count = count + 1;

 end;

end;
>> count

count =

3

1b.

count.m

function result = count(argument)

% COUNT - count the number of character in a set.

result = 0;

for i = 1:length(argument),

 if strcmp(argument(i), 'a')

 result = result + 1;

 end;

end;

%% Count the number of 'a' from count.m

path(path, 'U:\lab03\');

count({'a', 'b', 'c', 'a', 'aa'})

%% ans = 2

%% This counts the number of exact 'a' matches from the
%% cell array

 count(['a', 'b', 'c', 'a', 'aa'])

%% ans = 4

%% This counts the number of 'a' in the string "abcaaa"

1c.
function result = count(argument)

% COUNT - count the number of character in a set.

result = 0;

for i = 1:length(argument),

 if strcmp(argument(i), 'a')

 result = result + 1;

 end;

end;
2.

countas.m

% COUNTAS - Count the number of a’s in the input.

while 1

response = input('Enter a string:','s');

if (strcmp(response,'quit') |...

 strcmp(response,'exit'))

 break;

end

disp(count(response));

end

%OUTPUT

>> countas

Enter a string:hahah

 2

Enter a string:quit

>>
3a.
update.m

function [next, output] = update(state, input)

%% implementation of the C4. State machine

switch input

case '0'

next = 0;

if state output = '1';

else output = '0';

end

case '1'

next = 1;

if state output = '1';

else output = '0';

end

otherwise

next = state;

output = 'absent';

end
3b.
delay.m

% DELAY - Just keep calling update

state = 0;

while 1

in = input('Enter 0, 1, absent, or quit: ', 's');

if (strcmp(in, 'quit') | strcmp(in, 'exit'))

break;

end

[state, output] = update(state, in);

disp(output);

end

%OUTPUT
>> delay

Enter 0, 1, absent, or quit: 0

0

Enter 0, 1, absent, or quit: 1

0

Enter 0, 1, absent, or quit: 0

1

Enter 0, 1, absent, or quit: 1

0

Enter 0, 1, absent, or quit: 2

absent

Enter 0, 1, absent, or quit: quit
Independent Portion

States of the myCat Finite State Machine are {happy, hungry, dead}, inputs are {feed, pet, time passes}, and outputs are {throws up, purrs, rubs, bites, dies, absent}
The responses of the cat are chosen to be my states, the the actions of the cat are the input and output sets. The reason for using responses to be the states are because I only have 3 states {happy, hungry, dead}. I tried to use the actions to be the states, but there were too many states and transitions.
1a.

%myCat.m

inputs = input('Input:', 's');

% initial state

s = 'happy';

while ~strcmp(inputs, 'quit') && ~strcmp(inputs, 'exit')

 [s, y] = update(s, inputs);

 %display output and state

 disp(['The Cat "',y, '", it is going to be "',s,'"']);

 if strcmp(y, 'dies')

 break;

 end;

 inputs = input('Input:','s');

end;

1b.
%update.m

function [nextState, output] = update(currentState, input)

switch currentState

 case 'happy'

 nextState = 'happy';

 if strcmp (input, 'pet')

 output = 'purrs';

 elseif strcmp (input, 'feed')

 output = 'throws up';

 elseif strcmp (input, 'time passes')

 output = 'rubs';

 nextState = 'hungry';

 else output = 'absent'; %I don't understand what u said

 end

 case 'hungry'

 if strcmp (input, 'pet')

 nextState = 'hungry';

 output = 'bites';

 elseif strcmp (input, 'feed')

 nextState = 'happy';

 output = 'purrs';

 elseif strcmp (input, 'time passes')

 output = 'dies';

 nextState = 'dead';

 else

 output = 'absent';

 nextState = 'hungry';

 end

 otherwise %This might not ever happen
 nextState = 'dead';

 output = 'absent';

end

%OUTPUT
>> myCat

Input:pet

The Cat "purrs", it is going to be "happy"

Input:feed

The Cat "throws up", it is going to be "happy"

Input:time passes

The Cat "rubs", it is going to be "hungry"

Input:pet

The Cat "bites", it is going to be "hungry"

Input:feed

The Cat "purrs", it is going to be "happy"

Input:time passes

The Cat "rubs", it is going to be "hungry"

Input:time passes

The Cat "dies", it is going to be "dead"

2.
States are {happy, hungry}, inputs are {feed, pet, time passes, 1}, and outputs are {throws up, purrs, rubs, bites, absent}

In particular, the feeder makes sure the cat does not die. The feeder feeds the cat when it is in the “hungry” state and “time passes” at the same time. In other times, the feeder just basically does not function, so normal activities other than “dies” were inherited from myCat.m.
I cascade a feeder to the myCat machine, and make it a feedback (feeder) machine.
2a.

%feeder.m – feeder, the feedback machine
function [output] = feeder (state, input)

%feed when 1 or time passes

if ((strcmp(input, '1')||strcmp(input,'time passes'))...

 && strcmp(state, 'hungry')) output='feed';

 %time passes when input is 1 and state != hungry

 else if (strcmp(input, '1')) output='time passes';

 %all other inputs are fine, let them be

 else output=input;

 end

end

2b.

%catForever – that means cat, oh, cat, don’t die on me
inputs = input('Input:', 's');

% initial state

s = 'happy';

while ~strcmp(inputs, 'quit') && ~strcmp(inputs, 'exit')

 disp(['The Cat was "',s,'", before the "',feeder(s,inputs),'"']);

 [s, y] = update(s, feeder(s,inputs));

 %display output and state

 disp(['The Cat "',y, '", it is going to be "',s,'"']);

 if strcmp(y, 'dies')

 break;

 end;

 inputs = input('Input:','s');

end;

%OUTPUT
>> catForever

Input:1

The Cat was "happy", before the "time passes"

The Cat "rubs", it is going to be "hungry"

Input:1

The Cat was "hungry", before the "feed"

The Cat "purrs", it is going to be "happy"

Input:time passes

The Cat was "happy", before the "time passes"

The Cat "rubs", it is going to be "hungry"

Input:time passes

The Cat was "hungry", before the "feed"

The Cat "purrs", it is going to be "happy"

Input:time passes

The Cat was "happy", before the "time passes"

The Cat "rubs", it is going to be "hungry"

Input:pet

The Cat was "hungry", before the "pet"

The Cat "bites", it is going to be "hungry"

Input:quit
Conclusion:

Matlab is able to implement finite state machines. The most important aspect of this lab is to determine the states, inputs, and outputs. Cascading two state machines with feedback, the output of the first machine must be a subset of the input of the second machine. This lab exposed the students to an application of Matlab, which is to construct state machines to what we have learnt in lectures.
